人工智能公平技术对于挽救生命具有重大意义
弗吉尼亚理工大学计算机科学教授Daphne Yao希望提高机器学习模型在医疗应用中的预测精度。不准确的预测可能会导致危及生命的后果。这些预测误差可能会导致错误计算病人在急诊室就诊时死亡或癌症存活的可能性。
她的研究结果最近发表在《医学通讯》杂志上,该杂志致力于发表高质量的研究、评论和论文,涵盖所有临床、转化和公共卫生研究领域。
Yao说,许多临床数据集是不平衡的,因为它们被多数群体样本所主导。在典型的适用于所有人的一台机器学习模型范式中,种族和年龄差异很可能存在,但可能被忽略。
Yao和她的研究团队与Charles B. Nemeroff合作,Nemeroff是美国国家医学院的成员,也是德克萨斯大学奥斯汀分校戴尔医学院精神病学和行为科学系的教授,研究训练数据中的偏差如何影响预测结果,特别是对代表性不足的患者的影响,如年轻患者或有色人种患者。
Nemeroff说:“我非常高兴能与Yao合作,她是先进机器学习领域的世界领导者。”“她和我讨论了一个概念,即机器学习的新进展可以应用于临床研究人员经常遇到的一个非常重要的问题,即通常参加临床试验的少数族裔人数相对较少。”
这导致医疗结论主要是针对多数群体(欧洲裔白人患者)得出的,这可能不适用于少数族裔群体。
Nemeroff称:“这份新报告提供了一种方法来提高对少数群体的预测准确性。”“显然,这些发现对改善少数民族患者的临床护理具有非常重要的意义。”
Yao的弗吉尼亚理工大学团队由计算机科学系的博士生Sharmin Afrose和Wenjia Song以及化学工程系的Chang Lu,Fred W. Bull教授组成。为了进行研究,她们在两个数据集上对四种不同的预后任务进行了实验,使用了一种新的双优先级(DP)偏差校正方法,为特定的种族或年龄组训练定制模型。
“我们的工作展示了一种新的人工智能公平技术,可以纠正预测错误,”四年级博士生Song说,她的研究领域包括数字健康和网络安全中的机器学习。“我们的DP方法提高了少数民族班级的表现高达38%,并显著减少了不同人口统计群体之间的预测差异,比其他抽样方法好88%。”
监测、流行病学和最终结果数据集被Song用于乳腺癌和肺癌生存率的任务,而五年级博士生Afrose则使用来自波士顿Beth Israel Deaconess医疗中心的数据集进行住院死亡率预测和失代偿预测任务。
“我们很高兴找到了减少偏见的解决方案,”Afrose说,她的研究重点包括医疗保健和软件安全中的机器学习。“我们的DP偏差校正技术将减少对少数群体潜在的威胁生命的预测错误。”
随着这些发现的发表和公开访问,该团队渴望与其他研究人员合作,在他们自己的临床数据分析中使用这些方法。
Song说:“我们的方法很容易部署在各种机器学习模型上,可以帮助提高任何具有表征偏差的预后任务的性能。”
以上是人工智能公平技术对于挽救生命具有重大意义的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
