目录
1、数据集和目标
2、准备工作
3、超参数
4、创建训练和测试集
5、设计神经网络架构
6、训练
7、小结
首页 科技周边 人工智能 使用TensorFlow训练图像分类模型的指南

使用TensorFlow训练图像分类模型的指南

Apr 13, 2023 pm 05:13 PM
模型 tensorflow 分类

译者 | 陈峻

审校 | 孙淑娟

众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。如今,随着机器学习和深度学习算法的不断迭代,计算机已经能够以非常高的精度,对捕获到的图像进行大规模的分类了。目前,此类先进算法的应用场景已经涵括到了包括:解读肺部扫描影像是否健康,通过移动设备进行面部识别,以及为零售商区分不同的消费对象类型等领域。

下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。

1、数据集和目标

在本示例中,我们将使用MNIST数据集的从0到9的数字图像。其形态如下图所示:

图片

我们训练该模型的目的是为了将图像分类到其各自的标签下,即:它们在上图中各自对应的数字处。通常,深度神经网络架构会提供一个输入、一个输出、两个隐藏层(Hidden Layers)和一个用于训练模型的Dropout层。而CNN或卷积神经网络(Convolutional Neural Network)是识别较大图像的首选,它能够在减少输入量的同时,捕获到相关的信息。

2、准备工作

首先,让我们通过TensorFlow、to_categorical(用于将数字类的值转换为其他类别)、Sequential、Flatten、Dense、以及用于构建神经网络架构的 Dropout,来导入所有相关的代码库。您可能会对此处提及的部分代码库略感陌生。我会在下文中对它们进行详细的解释。

3、超参数

  • 我将通过如下方面,来选择正确的超参数集:

  • 首先,让我们定义一些超参数作为起点。后续,您可以针对不同的需求,对其进行调整。在此,我选择了128作为较小的批量尺寸(batch size)。其实,批量尺寸可以取任何值,但是2的幂次方大小往往能够提高内存的效率,因此应作为首选。值得注意的是,在决定合适的批量尺寸时,其背后的主要参考依据是:过小的批量尺寸会使收敛过于繁琐,而过大的批量尺寸则可能并不适合您的计算机内存。
  • 让我们将epoch(训练集中每一个样本都参与一次训练)的数量保持为50 ,以实现对模型的快速训练。epoch数值越低,越适合小而简单的数据集。
  • 接着,您需要添加隐藏层。在此,我为每个隐藏层都保留了128个神经元。当然,你也可以用64和32个神经元进行测试。就本例而言,像MINST这样的简单数据集,我并不建议使用较高的数值。
  • 您可以尝试不同的学习率(learning rate),例如0.01、0.05和0.1。在本例中,我将其保持为0.01。
  • 对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。
  • 在此,我选择Adamax作为优化器。当然,您也可以选择诸如Adam、RMSProp、SGD等其他优化器。
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Dropout
params = {
'dropout': 0.25,
'batch-size': 128,
'epochs': 50,
'layer-1-size': 128,
'layer-2-size': 128,
'initial-lr': 0.01,
'decay-steps': 2000,
'decay-rate': 0.9,
'optimizer': 'adamax'
}
mnist = tf.keras.datasets.mnist
num_class = 10
# split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# reshape and normalize the data
x_train = x_train.reshape(60000, 784).astype("float32")/255
x_test = x_test.reshape(10000, 784).astype("float32")/255
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_class)
y_test = to_categorical(y_test, num_class)
登录后复制

4、创建训练和测试集

由于TensorFlow库也包括了MNIST数据集,因此您可以通过调用对象上的 datasets.mnist ,再调用load_data() 的方法,来分别获取训练(60,000个样本)和测试(10,000个样本)的数据集。

接着,您需要对训练和测试的图像进行整形和归一化。其中,归一化会将图像的像素强度限制在0和1之间。

最后,我们使用之前已导入的to_categorical 方法,将训练和测试标签转换为已分类标签。这对于向TensorFlow框架传达输出的标签(即:0到9)为类(class),而不是数字类型,是非常重要的。

5、设计神经网络架构

下面,让我们来了解如何在细节上设计神经网络架构。

我们通过添加Flatten ,将2D图像矩阵转换为向量,以定义DNN(深度神经网络)的结构。输入的神经元在此处对应向量中的数字。

接着,我使用Dense() 方法,添加两个隐藏的密集层,并从之前已定义的“params”字典中提取各项超参数。我们可以将“relu”(Rectified Linear Unit)作为这些层的激活函数。它是神经网络隐藏层中最常用的激活函数之一。

然后,我们使用Dropout方法添加Dropout层。它将被用于在训练神经网络时,避免出现过拟合(overfitting)。毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。

输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。需要注意的是,输出层有10个神经元,这对应于类(数字)的数量。

# Model Definition
# Get parameters from logged hyperparameters
model = Sequential([
Flatten(input_shape=(784, )),
Dense(params('layer-1-size'), activatinotallow='relu'),
Dense(params('layer-2-size'), activatinotallow='relu'),
Dropout(params('dropout')),
Dense(10)
])
lr_schedule =
tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=experiment.get_parameter('initial-lr'),
decay_steps=experiment.get_parameter('decay-steps'),
decay_rate=experiment.get_parameter('decay-rate')
)
loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adamax',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=experiment.get_parameter('batch-size'),
epochs=experiment.get_parameter('epochs'),
validation_data=(x_test, y_test),)
score = model.evaluate(x_test, y_test)
# Log Model
model.save('tf-mnist-comet.h5')
登录后复制

6、训练

至此,我们已经定义好了架构。下面让我们用给定的训练数据,来编译和训练神经网络。

首先,我们以初始学习率、衰减步骤和衰减率作为参数,使用ExponentialDecay(指数衰减学习率)来定义学习率计划。

其次,将损失函数定义为CategoricalCrossentropy(用于多类式分类)。

接着,通过将优化器 (即:adamax)、损失函数、以及各项指标(由于所有类都同等重要、且均匀分布,因此我选择了准确性)作为参数,来编译模型。

然后,我们通过使用x_train、y_train、batch_size、epochs和validation_data去调用一个拟合方法,并拟合出模型。

同时,我们调用模型对象的评估方法,以获得模型在不可见数据集上的表现分数。

最后,您可以使用在模型对象上调用的save方法,保存要在生产环境中部署的模型对象。

7、小结

综上所述,我们讨论了为图像分类任务,训练深度神经网络的一些入门级的知识。您可以将其作为熟悉使用神经网络,进行图像分类的一个起点。据此,您可了解到该如何选择正确的参数集、以及架构背后的思考逻辑。

原文链接:https://www.kdnuggets.com/2022/12/guide-train-image-classification-model-tensorflow.html

以上是使用TensorFlow训练图像分类模型的指南的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

See all articles