目录
方法
实验
首页 科技周边 人工智能 自然语言融入NeRF,给点文字就生成3D图的LERF来了

自然语言融入NeRF,给点文字就生成3D图的LERF来了

Apr 13, 2023 pm 07:31 PM
自然语言

NeRF(Neural Radiance Fields)又称神经辐射场,自从被提出以来,火速成为最为热门的研究领域之一,效果非常惊艳。然而,NeRF 的直接输出只是一个彩色的密度场,对研究者来说可用信息很少,缺乏上下文就是需要面对的问题之一,其效果是直接影响了与 3D 场景交互界面的构建。

但自然语言不同,自然语言与 3D 场景交互非常直观。我们可以用图 1 中的厨房场景来解释,通过询问餐具在哪,或者询问用来搅拌的工具在哪,以这种方式就可以在厨房里找到物体。不过完成这项任务不仅需要模型的查询能力,还需要能够在多个尺度上合并语义等。

本文中,来自 UC 伯克利的研究者提出了一种新颖的方法,并命名为 LERF(Language Embedded Radiance Fields),该方法将 CLIP(Contrastive Language-Image Pre-training)等模型中的语言嵌入到 NeRF 中,从而使得这些类型的 3D 开放式语言查询成为可能。LERF 直接使用 CLIP,无需通过 COCO 等数据集进行微调,也不需要依赖掩码区域建议。LERF 在多个尺度上保留了 CLIP 嵌入的完整性,还能够处理各种语言查询,包括视觉属性(如黄色)、抽象概念(如电流)、文本等,如图 1 所示。

图片

论文地址:https://arxiv.org/pdf/2303.09553v1.pdf

项目主页:https://www.lerf.io/

LERF 可以实时交互地为语言提示提取 3D 相关示图。例如在一张有小羊和水杯的桌子上,输入提示小羊、或者水杯,LERF 就可以给出相关 3D 图:

图片

对于复杂的花束,LERF 也可以精准定位:

图片

 厨房中的不同物体:

图片

方法

该研究通过与 NeRF 联合优化语言场构建了新方法 LERF。LERF 将位置和物理尺度作为输入并输出单个 CLIP 向量。在训练期间,场(field)使用多尺度特征金字塔(pyramid)进行监督,该金字塔包含从训练视图的图像裁剪(crop)生成的 CLIP 嵌入。这允许 CLIP 编码器捕获不同尺度的图像语境,从而将相同的 3D 位置与不同尺度的语言嵌入相关联。LERF 可以在测试期间以任意尺度查询语言场以获得 3D 相关性映射。

图片

由于从多尺度的多个视图中提取 CLIP 嵌入,因此通过 LERF 的 3D CLIP 嵌入获得的文本查询的相关性映射与通过 2D CLIP 嵌入获得的相比更加本地化(localized),并且是 3D 一致的,可以直接在 3D 场中进行查询,而无需渲染多个视图。

图片

LERF 需要在以样本点为中心的体积上学习语言嵌入场。具体来说,该场的输出是包含指定体积的图像裁剪的所有训练视图的平均 CLIP 嵌入。通过将查询从点重构为体积,LERF 可以有效地从输入图像的粗略裁剪中监督密集场,这些图像可以通过在给定的体积尺度上进行调节以像素对齐的方式呈现。

图片

LERF 本身会产生连贯的结果,但生成的相关性映射有时可能是不完整的,并且包含一些异常值,如下图 5 所示。

图片

为了规范优化的语言场,该研究通过共享瓶颈引入了自监督的 DINO。

在架构方面,优化 3D 中的语言嵌入不应该影响底层场景表征中的密度分布,因此该研究通过训练两个独立的网络来捕获 LERF 中的归纳偏置(inductive bias):一个用于特征向量(DINO、CLIP),另一个用于标准 NeRF 输出(颜色、密度)。

实验

为了展示 LERF 处理真实世界数据的能力,该研究收集了 13 个场景,其中包括杂货店、厨房、书店、小雕像等场景。图 3 选择了 5 个具有代表性的场景,展示了 LERF 处理自然语言的能力。

图片

图 3

图 7 为 LERF 与 LSeg 的 3D 视觉对比,在标定碗里的鸡蛋中,LSeg 不如 LERF:

图片

图 8 表明,在有限的分割数据集上训练的 LSeg 缺乏有效表示自然语言的能力。相反,它仅在训练集分布范围内的常见对象上表现良好,如图 7 所示。

图片

不过 LERF 方法还不算完美,下面为失败案例,例如在标定西葫芦蔬菜时,会出现其他蔬菜:

图片

以上是自然语言融入NeRF,给点文字就生成3D图的LERF来了的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

自然语言生成任务中的五种采样方法介绍和Pytorch代码实现 自然语言生成任务中的五种采样方法介绍和Pytorch代码实现 Feb 20, 2024 am 08:50 AM

在自然语言生成任务中,采样方法是从生成模型中获得文本输出的一种技术。这篇文章将讨论5种常用方法,并使用PyTorch进行实现。1、GreedyDecoding在贪婪解码中,生成模型根据输入序列逐个时间步地预测输出序列的单词。在每个时间步,模型会计算每个单词的条件概率分布,然后选择具有最高条件概率的单词作为当前时间步的输出。这个单词成为下一个时间步的输入,生成过程会持续直到满足某种终止条件,比如生成了指定长度的序列或者生成了特殊的结束标记。GreedyDecoding的特点是每次选择当前条件概率最

如何使用PHP进行基本的自然语言生成 如何使用PHP进行基本的自然语言生成 Jun 22, 2023 am 11:05 AM

自然语言生成是一种人工智能技术,它能够将数据转换为自然语言文本。在当今的大数据时代,越来越多的业务需要将数据可视化或呈现给用户,而自然语言生成正是一种非常有效的方法。PHP是一种非常流行的服务器端脚本语言,它可以用于开发Web应用程序。本文将简要介绍如何使用PHP进行基本的自然语言生成。引入自然语言生成库PHP自带的函数库并不包括自然语言生成所需的功能,因此

流量工程将代码生成的准确率提高一倍:由19%提高至44% 流量工程将代码生成的准确率提高一倍:由19%提高至44% Feb 05, 2024 am 09:15 AM

一篇新论文的作者提出了一种“强化”代码生成的方法。代码生成是人工智能中一项日益重要的能力。它通过训练机器学习模型,根据自然语言描述自动生成计算机代码。这一技术具有广泛的应用前景,可以将软件规格转化为可用的代码,自动化后端开发,并协助人类程序员提高工作效率。然而,生成高质量代码对AI系统仍然具有挑战性,与翻译或总结等语言任务相比。代码必须准确地符合目标编程语言的语法,能够优雅地处理各种极端情况和意外输入,并精确地处理问题描述中的许多小细节。即使是其他领域看似无害的小错误也可能完全破坏程序的功能,导

使用马尔可夫链构建文本生成器 使用马尔可夫链构建文本生成器 Apr 09, 2023 pm 10:11 PM

本文中将介绍一个流行的机器学习项目——文本生成器,你将了解如何构建文本生成器,并了解如何实现马尔可夫链以实现更快的预测模型。文本生成器简介文本生成在各个行业都很受欢迎,特别是在移动、应用和数据科学领域。甚至新闻界也使用文本生成来辅助写作过程。在日常生活中都会接触到一些文本生成技术,文本补全、搜索建议,Smart Compose,聊天机器人都是应用的例子,本文将使用马尔可夫链构建一个文本生成器。这将是一个基于字符的模型,它接受链的前一个字符并生成序列中的下一个字母。通过使用样例单词训练我们的程序,

集成GPT-4的Cursor让编写代码和聊天一样简单,用自然语言编写代码的新时代已来 集成GPT-4的Cursor让编写代码和聊天一样简单,用自然语言编写代码的新时代已来 Apr 04, 2023 pm 12:15 PM

集成GPT-4的Github Copilot X还在小范围内测中,而集成GPT-4的Cursor已公开发行。Cursor是一个集成GPT-4的IDE,可以用自然语言编写代码,让编写代码和聊天一样简单。 GPT-4和GPT-3.5在处理和编写代码的能力上差别还是很大的。官网的一份测试报告。前两个是GPT-4,一个采用文本输入,一个采用图像输入;第三个是GPT3.5,可以看出GPT-4的代码能力相较于GPT-3.5有较大能力的提升。集成GPT-4的Github Copilot X还在小范围内测中,而

价值观、隐私保护全覆盖 网信办拟为生成式AI“立规矩” 价值观、隐私保护全覆盖 网信办拟为生成式AI“立规矩” Apr 13, 2023 pm 03:34 PM

4月11日,国家互联网信息办公室(以下简称“网信办”)起草发布了《生成式人工智能服务管理办法(征求意见稿)》,并向社会公众展开为期一个月的意见征求。这份管理办法(征求意见稿)共计21条,从适用范围看,既包括了提供生成式人工智能服务的主体,也包括使用这些服务的组织和个人;管理办法覆盖了生成式人工智能输出内容的价值导向、服务提供方的训练原则、隐私权/知识产权等各项权利的保护等等。GPT类生成式自然语言大模型及产品出现后,既让公众体验到了人工智能的飞跃式进步,也暴露出安全风险,包括产生带偏见和歧视性的

一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了 一定要「分词」吗?Andrej Karpathy:是时候抛弃这个历史包袱了 May 20, 2023 pm 12:52 PM

ChatGPT等对话AI的出现让人们习惯了这样一件事情:输入一段文本、代码或一张图片,对话机器人就能给出你想要的答案。但在这种简单的交互方式背后,AI模型要进行非常复杂的数据处理和运算,tokenization就是比较常见的一种。在自然语言处理领域,tokenization指的是将文本输入分割成更小的单元,称为「token」。这些token可以是词、子词或字符,取决于具体的分词策略和任务需求。例如,如果对句子「我喜欢吃苹果」执行tokenization操作,我们将得到一串token序列:[&qu

多国拟发ChatGPT禁令 关“野兽”的笼子要来了? 多国拟发ChatGPT禁令 关“野兽”的笼子要来了? Apr 10, 2023 pm 02:40 PM

“人工智能想越狱“、”AI产生自我意识”、“AI终将杀死人类”、“硅基生命的进化”.......曾经只在在赛博朋克等科技幻想中出现的剧情,在今年走向现实,生成式自然语言模型正在遭受前所未有的质疑。聚光灯下最瞩目的那个是ChatGPT,3月底到4月初,OpenAI开发的这个文本对话机器人,突然从“先进生产力”的代表变成了人类的威胁。先是被上千位科技圈的精英们点名,放在“暂停训练比GPT-4更强大的AI系统”的公开信中;紧接着,美国科技伦理组织又要求美国联邦贸易委员会调查OpenAI,禁止发布商业版

See all articles