目录
1、DetectGPT:随机排列和假设
2、DetectGPT:自动测试
3、将微扰差异解释为曲率
4、结果展示
零样本机器生成文本检测
与有监督检测器的比较
机器生成文本检测的变体
首页 科技周边 人工智能 DetectGPT:使用概率曲率的零样本机器生成文本检测

DetectGPT:使用概率曲率的零样本机器生成文本检测

Apr 14, 2023 am 10:13 AM
数据集 detectgpt

DetectGPT的目的是确定一段文本是否由特定的llm生成,例如GPT-3。为了对段落 x 进行分类,DetectGPT 首先使用通用的预训练模型(例如 T5)对段落 ~xi 生成较小的扰动。然后DetectGPT将原始样本x的对数概率与每个扰动样本~xi进行比较。如果平均对数比高,则样本可能来自源模型。

图片

ChatGPT是一个热门话题。人们正在讨论是否可以检测到一篇文章是由大型语言模型(LLM)生成的。DetectGPT定义了一种新的基于曲率的准则,用于判断是否从给定的LLM生成。DetectGPT不需要训练单独的分类器,不需要收集真实或生成的段落的数据集,也不需要显式地为生成的文本加水印。它只使用由感兴趣的模型计算的对数概率和来自另一个通用预训练语言模型(例如T5)的文章随机扰动。

1、DetectGPT:随机排列和假设

图片

识别并利用了机器生成的通道x~pθ(左)位于logp (x)的负曲率区域的趋势,其中附近的样本平均具有较低的模型对数概率。相比之下,人类书写的文本x~preal(.)(右)倾向于不占据具有明显负对数概率曲率的区域。

DetectGPT基于一个假设,即来自源模型pθ的样本通常位于pθ对数概率函数的负曲率区域,这是人类文本不同的。如果我们对一段文本 x~pθ 应用小的扰动,产生 ~x,与人类编写的文本相比,机器生成的样本的数量 log pθ(x) - log pθ(~x) 应该相对较大。利用这个假设,首先考虑一个扰动函数 q(.|x),它给出了在 ~x 上的分布,x 的略微修改版本具有相似的含义(通常考虑粗略的段落长度文本 x)。例如,q(.|x) 可能是简单地要求人类重写 x 的其中一个句子的结果,同时保留 x 的含义。使用扰动函数的概念,可以定义扰动差异 d (x; pθ, q):

DetectGPT:使用概率曲率的零样本机器生成文本检测

因此,下面的假设 4.1也就是:

DetectGPT:使用概率曲率的零样本机器生成文本检测

如果q(.|x)是来自掩码填充模型(如T5)的样本而不是人类重写,那么假设4.1可以以自动的、可扩展的方式进行经验检验。

2、DetectGPT:自动测试

DetectGPT:使用概率曲率的零样本机器生成文本检测

对一篇文章进行改写后,模型生成的文章的对数概率(扰动差异)的平均下降始终高于人工书写的文章

对于真实数据,使用了XSum数据集中的500篇新闻文章。当提示XSum中每篇文章的前30个令牌时,使用四个不同llm的输出。使用T5-3B施加扰动,遮蔽随机采样的2个单词跨度,直到文章中15%的单词被掩盖。上面公式(1)中的期望近似于T5中的100个样本。

上述实验结果表明,人写文章和模型样本的摄动差异分布有显著差异;模型样本往往有较大的扰动差异。根据这些结果,就可以通过简单地阈值扰动差异来检测一段文本是否由模型p生成。

通过用于估计 E~x q(.|x) log p (~x) 的观测值的标准偏差对扰动差异进行归一化提供了更好的检测,通常将 AUROC 增加 0.020 左右, 所以在实验中使用了扰动差异的归一化版本。

图片

DetectGPT 的检测过程伪代码

扰动差异可能是有用的,它测量的是什么还无法明确解释,所以作者在下一节中使用曲率进行解释。

3、将微扰差异解释为曲率

扰动差异近似于候选段落附近对数概率函数局部曲率的度量,更具体地说,它与对数概率函数的 Hessian 矩阵的负迹成正比。

这一节内容比较多,这里就不详细解释了,有兴趣的可以看看原论文,大概总结如下:

语义空间中的采样确保所有样本都保持在数据流形附近,因为如果随机添加扰动标记,预计对数概率总是下降。所以可以将目标解释为近似限制在数据流形上的曲率。

4、结果展示

零样本机器生成文本检测

图片

每个实验使用150到500个例子进行评估。机器生成的文本是通过提示真实文本的前30个标记来生成的。使用AUROC)评估性能。

可以看到DetectGPT最大程度地提高了XSum故事的平均检测精度(AUROC提高0.1 )和SQuAD维基百科上下文(AUROC提高0.05 )。

对于15种数据集和模型组合中的14种,DetectGPT提供了最准确的检测性能,AUROC平均提高了0.06。

与有监督检测器的比较

图片

在真实文本和生成文本的大型数据集上训练的有监督的机器生成文本检测模型在分布内(顶部行)文本上的表现与DetectGPT一样好,甚至更好。零样本方法适用于新域(底部一行),如PubMed医学文本和WMT16中的德语新闻数据。

来自每个数据集的200个样本进行评估,监督检测器对英语新闻等分布内数据的检测性能与DetectGPT相似,但在英语科学写作的情况下,其表现明显差于零样本方法,而在德语写作中则完全失败。

图片

DetectGPT检测GPT-3的平均AUROC与专门为机器生成文本检测训练的监督模型相当。

从PubMedQA、XSum和writingprompt数据集中抽取了150个示例。将两种预训练的基于roberta的检测器模型与DetectGPT和概率阈值基线进行了比较。DetectGPT 可以提供与更强大的监督模型竞争的检测。

机器生成文本检测的变体

图片

这部分是看检测器是否可以检测到人工编辑的机器生成文本。通过用 T5–3B 中的样本替换文本的 5 个单词跨度来模拟人工修订,直到 r% 的文本被替换。即使模型样本中近四分之一的文本已被替换,DetectGPT 仍能将检测 AUROC 保持在 0.8 以上。DetectGPT 显示了所有修订级别的最强检测性能。

以上是DetectGPT:使用概率曲率的零样本机器生成文本检测的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

使用PyTorch进行小样本学习的图像分类 使用PyTorch进行小样本学习的图像分类 Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

在自定义数据集上实现OpenAI CLIP 在自定义数据集上实现OpenAI CLIP Sep 14, 2023 am 11:57 AM

在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP。这两个模型都是多模态模型,以某种方式连接文本和图像。CLIP的全称是对比语言-图像预训练(ContrastiveLanguage-ImagePre-training),它是一种基于对比文本-图像对的预训练方法。为什么要介绍CLIP呢?因为目前火热的StableDiffusion并不是单一模型,而是由多个模型组成。其中一个关键组成部分是文本编码器,用于对用户的文本输入进行编码,而这个文本编码器就是CLIP模型中的文本编码器CL

谷歌AI视频再出王炸!全能通用视觉编码器VideoPrism,性能刷新30项SOTA 谷歌AI视频再出王炸!全能通用视觉编码器VideoPrism,性能刷新30项SOTA Feb 26, 2024 am 09:58 AM

AI视频模型Sora爆火之后,Meta、谷歌等大厂纷纷下场做研究,追赶OpenAI的步伐。最近,来自谷歌团队的研究人员提出了一种通用视频编码器——VideoPrism。它能够通过单一冻结模型,处理各种视频理解任务。图片论文地址:https://arxiv.org/pdf/2402.13217.pdf比如,VideoPrism能够将下面视频中吹蜡烛的人分类、定位出来。图片视频-文本检索,根据文本内容,可以检索出视频中相应的内容。图片再比如,描述下面视频——一个小女孩正在玩积木。还可以进行QA问答。

如何正确拆分数据集?常见的三种方法总结 如何正确拆分数据集?常见的三种方法总结 Apr 08, 2023 pm 06:51 PM

将数据集分解为训练集,可以帮助我们了解模型,这对于模型如何推广到新的看不见数据非常重要。 如果模型过度拟合可能无法很好地概括新的看不见的数据。因此也无法做出良好的预测。拥有适当的验证策略是成功创建良好预测,使用AI模型的业务价值的第一步,本文中就整理出一些常见的数据拆分策略。简单的训练、测试拆分将数据集分为训练和验证2个部分,并以80%的训练和20%的验证。 可以使用Scikit的随机采样来执行此操作。首先需要固定随机种子,否则无法比较获得相同的数据拆分,在调试时无法获得结果的复现。 如果数据集

PyTorch 并行训练 DistributedDataParallel 完整代码示例 PyTorch 并行训练 DistributedDataParallel 完整代码示例 Apr 10, 2023 pm 08:51 PM

使用大型数据集训练大型深度神经网络 (DNN) 的问题是深度学习领域的主要挑战。 随着 DNN 和数据集规模的增加,训练这些模型的计算和内存需求也会增加。 这使得在计算资源有限的单台机器上训练这些模型变得困难甚至不可能。 使用大型数据集训练大型 DNN 的一些主要挑战包括:训练时间长:训练过程可能需要数周甚至数月才能完成,具体取决于模型的复杂性和数据集的大小。内存限制:大型 DNN 可能需要大量内存来存储训练期间的所有模型参数、梯度和中间激活。 这可能会导致内存不足错误并限制可在单台机器上训练的

计算人工智能的碳成本 计算人工智能的碳成本 Apr 12, 2023 am 08:52 AM

如果您正在寻找有趣的话题,那么人工智能 (AI) 不会让您失望。人工智能包含一组强大的令人费解的统计算法,可以下棋、破译潦草的笔迹、理解语音、分类卫星图像等等。用于训练机器学习模型的巨型数据集的可用性一直是人工智能成功的关键因素之一。但所有这些计算工作都不是免费的。一些人工智能专家越来越关注与构建新算法相关的环境影响,这场辩论引发了关于如何让机器更有效地学习以减少人工智能碳足迹的新想法。回到地球要深入了解细节,我们首先需要考虑数以千计的数据中心(遍布世界各地),它们24小时全天候处理我们的计算请

利用核模型高斯过程(KMGPs)进行数据建模 利用核模型高斯过程(KMGPs)进行数据建模 Jan 30, 2024 am 11:15 AM

核模型高斯过程(KMGPs)是一种复杂的工具,用于处理各种数据集的复杂性。它通过核函数扩展了传统高斯过程的概念。本文将详细讨论KMGPs的理论基础、实际应用和面临的挑战。核模型高斯过程是对传统高斯过程的一种扩展,用于机器学习和统计学。了解kmgp前,需掌握高斯过程基础知识,再理解核模型的作用。高斯过程(GPs)高斯过程是随机变量集合,有限个变量联合高斯分布,用于定义函数概率分布。高斯过程在机器学习中常用于回归和分类任务,可用于拟合数据的概率分布。高斯过程的一个重要特征是能够提供不确定性估计和预测

See all articles