哪种Python循环方式最快?
众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。
while 和 for 是 Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。比如下面的测试代码:
import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354
这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 for 循环相比 while 要快 1.5 秒。
其中的差距主要在于两者的机制不同。
在每次循环中,while 实际上比 for 多执行了两步操作:边界检查和变量 i 的自增。即每进行一次循环,while 都会做一次边界检查 (while i < n)和自增计算(i +=1)。这两步操作都是显式的纯 Python 代码。
for 循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。
可以再增加两个函数,在 for 循环中加上不必要的边界检查和自增计算:
import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def for_loop_with_inc(n=100_000_000): s = 0 for i in range(n): s += i i += 1 return s def for_loop_with_test(n=100_000_000): s = 0 for i in range(n): if i < n: pass s += i return s def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('for loop with incrementtt', timeit.timeit(for_loop_with_inc, number=1)) print('for loop with testtt', timeit.timeit(for_loop_with_test, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => for loop with increment4.602369500091299 # => for loop with test 4.18337869993411
可以看出,增加的边界检查和自增操作确实大大影响了 for 循环的执行效率。
前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python。
对于上面的求等差数列之和的操作,借助于 Python 内置的 sum 函数,可以获得远大于 for 或 while 循环的执行效率。
import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def sum_range(n=100_000_000): return sum(range(n)) def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('sum rangett', timeit.timeit(sum_range, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => sum range0.8658821999561042
可以看到,使用内置函数 sum 替代循环之后,代码的执行效率实现了成倍的增长。
内置函数 sum 的累加操作实际上也是一种循环,但它由 C 语言实现,而 for 循环中的求和操作是由纯 Python 代码 s += i 实现的。C > Python。
再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。
import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def sum_range(n=100_000_000): return sum(range(n)) def math_sum(n=100_000_000): return (n * (n - 1)) // 2 def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('sum rangett', timeit.timeit(sum_range, number=1)) print('math sumtt', timeit.timeit(math_sum, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => sum range0.8658821999561042 # => math sum 2.400018274784088e-06
最终 math sum 的执行时间约为 2.4e-6,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。
索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。
最后的结论(有点谜语人):
实现循环的最快方式—— —— ——就是不用循环
对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。
以上是哪种Python循环方式最快?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

HadiDB:轻量级、高水平可扩展的Python数据库HadiDB(hadidb)是一个用Python编写的轻量级数据库,具备高度水平的可扩展性。安装HadiDB使用pip安装:pipinstallhadidb用户管理创建用户:createuser()方法创建一个新用户。authentication()方法验证用户身份。fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

直接通过 Navicat 查看 MongoDB 密码是不可能的,因为它以哈希值形式存储。取回丢失密码的方法:1. 重置密码;2. 检查配置文件(可能包含哈希值);3. 检查代码(可能硬编码密码)。

作为数据专业人员,您需要处理来自各种来源的大量数据。这可能会给数据管理和分析带来挑战。幸运的是,两项 AWS 服务可以提供帮助:AWS Glue 和 Amazon Athena。

MySQL数据库性能优化指南在资源密集型应用中,MySQL数据库扮演着至关重要的角色,负责管理海量事务。然而,随着应用规模的扩大,数据库性能瓶颈往往成为制约因素。本文将探讨一系列行之有效的MySQL性能优化策略,确保您的应用在高负载下依然保持高效响应。我们将结合实际案例,深入讲解索引、查询优化、数据库设计以及缓存等关键技术。1.数据库架构设计优化合理的数据库架构是MySQL性能优化的基石。以下是一些核心原则:选择合适的数据类型选择最小的、符合需求的数据类型,既能节省存储空间,又能提升数据处理速度

启动 Redis 服务器的步骤包括:根据操作系统安装 Redis。通过 redis-server(Linux/macOS)或 redis-server.exe(Windows)启动 Redis 服务。使用 redis-cli ping(Linux/macOS)或 redis-cli.exe ping(Windows)命令检查服务状态。使用 Redis 客户端,如 redis-cli、Python 或 Node.js,访问服务器。

要从 Redis 读取队列,需要获取队列名称、使用 LPOP 命令读取元素,并处理空队列。具体步骤如下:获取队列名称:以 "queue:" 前缀命名,如 "queue:my-queue"。使用 LPOP 命令:从队列头部弹出元素并返回其值,如 LPOP queue:my-queue。处理空队列:如果队列为空,LPOP 返回 nil,可先检查队列是否存在再读取元素。
