目录
AGI的成功需要什么?
首页 科技周边 人工智能 通用人工智能(AGI):人工智能的下一个阶段

通用人工智能(AGI):人工智能的下一个阶段

Apr 14, 2023 pm 12:58 PM
人工智能 agi

通用人工智能(AGI):人工智能的下一个阶段

除了人工智能(AI)的改进和新应用之外,大多数人都认为,当通用人工智能(AGI)出现时,人工智能的下一次飞跃将发生。我们将AGI宽泛地定义为机器或计算机程序理解或学习人类可以完成的任何智力任务的假设能力。然而,对于何时以及如何实现这一目标,人们几乎没有达成共识。

一种观点认为,如果可以构建足够多的不同AI应用,每个应用都解决一个特定的问题,那么这些应用最终将共同成长为AGI的一种形式。这种方法的问题在于,这种所谓的“狭义”人工智能应用不能以通用形式存储信息。因此,其他狭隘的人工智能应用无法使用这些信息来扩展其广度。因此,虽然可以将语言处理和图像处理的应用拼接在一起,但这些应用无法像人类大脑集成听觉和视觉那样整合。

其他人工智能研究人员认为,如果能够构建一个足够大的机器学习(ML)系统,并拥有足够的计算机能力,其将自发地展示AGI。当我们更深入地研究ML的实际工作原理时,这将意味着拥有一个包含我们假设的ML系统可能遇到的所有情况的训练集。专家系统试图获取特定领域的知识,但几十年前就已经清楚地证明了这一点,要创建足够多的案例和示例数据来克服系统潜在的理解不足是不可能的。

这两种方法的问题在于,它们充其量只能创建出一个看起来很智能的人工智能。它们仍然依赖于预先确定的脚本和数百万个训练样本。这样的人工智能仍然无法理解文字和图像代表存在于物理宇宙中的物理事物。它们仍然不能合并来自多种感官的信息。因此,虽然可以将语言和图像处理应用结合起来,但仍然没有办法像人类大脑将视觉、听觉和与环境的直接交互集成在一起那样无缝整合。

AGI的成功需要什么?

为了获得真正的AGI,研究人员必须将注意力从不断扩大的数据集转移到一个更具有生物学意义的结构上,该结构包含意识的三个基本组成部分:以实体为中心的环境内部心理模型;对时间的感知,可以根据当前的行动感知未来的结果;还有想象力,可以考虑多种潜在的行动,并评估和选择其结果。简而言之,AGI必须开始表现出与人类相同的情境和常识性理解,以体验周围的世界。

为了实现这一目标,人工智能的计算系统必须更接近于人类大脑中的生物过程,而其算法必须允许它构建具有无限连接的抽象“事物”,而不是像当今的人工智能那样需要庞大的阵列、训练集和计算机能力。这样一个统一的知识库可能会与移动感知舱集成,其中包含视觉、听觉、运动和语音模块。这样的pod将使整个系统在其所采取的每个动作中都能体验到快速的感官反馈,随着时间的推移,这将导致一个端到端系统,随着它接近真正的AGI,可以开始学习、理解并最终更好地与人合作。

即使有这样一个系统,AGI的实际出现也可能是渐进的,而不是一蹴而就,这主要有两个原因。首先,也许也是最重要的,开发AGI显然是一项非常复杂和艰巨的任务,需要在多个不同的领域取得重大进展,其中包括计算机科学、神经科学和心理学。虽然这意味着数年的研究和开发,涉及众多科学家和工程师的贡献,但好在,大量的研究目前正在进行中。随着众多领域的研究,AGI的各个组成部分将随着它们的研究而出现。

然后,由于AGI的许多功能本身就具有市场价值,即时满足可能会减缓AGI的出现。如开发的功能可以改善Alexa的理解方式,或者新的视觉能力可以改善自动驾驶汽车,并且由于在商业上可行,个人开发会被迅速推向市场。然而,如果这些更专业、可单独销售的人工智能系统可以建立在一个共同的底层数据结构上,它们就可以开始相互交互,构建一个真正能够理解和学习的更广泛的环境。随着这些系统变得更加先进,它们将能够共同发挥作用,创造出更普遍的智能。

随着这些方面的增加,人工智能系统将在个别领域表现出更像人类的表现,并随着系统的增强而发展到超人的表现。但性能不可能同时在所有领域都相同。这表明,在某一时刻,我们将接近AGI的阈值,然后等于阈值,然后超过阈值。在这之后的某个时刻,我们将拥有明显优于人类智能的机器,人们将开始同意,也许AGI确实存在。最终,AGI必须实现,因为市场需要它。

以上是通用人工智能(AGI):人工智能的下一个阶段的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles