目录
1、简介
2、什么是地理编码?
3、Python中的地理编码
4、谷歌地图API
5、OpenStreetMap API
译者介绍
首页 后端开发 Python教程 全解Python的地理编码

全解Python的地理编码

Apr 14, 2023 pm 04:55 PM
python 编码 地理

译者 | 崔皓

审校 | 孙淑娟

1、简介

 大家在处理机器学习的大型数据集时,是否会遇到如下的地址栏?

图片

上面的位置数据非常混乱,难以处理。对地址进行编码是很困难的,因为它们具有非常高基数。如果你试图用单次编码技术来对某列进行编码,就会导致高维度的结果,这会导致机器学习模型表现欠佳。解决问题的最简单方法就是对列进行地理编码。

2、什么是地理编码?

地理编码是将地址转换为地理坐标,这意味着将把原始地址转化为经度/纬度的方式。

3、Python中的地理编码

有许多不同的库可以帮助你用Python进行地理编码。最快的是谷歌地图提供的API,如果有超过1000个地址需要在短时间内转换,我推荐你使用。然而,谷歌地图的API并不是免费的,你需要为每1000个请求支付约5美元。

谷歌地图API的免费替代品是OpenStreetMap API。然而,OpenStreetMap API的速度比起谷歌地图来说要慢得多,而且准确性也稍差。

在这篇文章中,我将指导你使用上述两个API完成地理编码过程。

4、谷歌地图API

让我们首先使用谷歌地图API将地址转换成精度/纬度。首先需要创建一个谷歌云账户,并输入信用卡信息。虽然这是一项付费服务,但当你第一次创建谷歌云账户时,谷歌会给你200美元的免费信用。这意味着,在你被收费之前,你可以用他们的地理编码API进行大约40,000次调用。只要你没有达到这个限制,你的账户就不会被收费。

首先,在谷歌云上建立一个免费账户。然后,一旦你建立了一个账户,你就可以按照这个教程来获得你的谷歌地图API密钥。

一旦你收到API密钥,就可以开始编码了!

(1)前提条件

在本教程中使用Zomato餐厅Kaggle数据集。确保在你的路径中安装了该数据集。然后,用这个命令安装googlemaps API包。

pip install -U googlemaps
登录后复制

(2)读取数据集

现在,让我们读取数据集并检查数据帧的头部。

data = pd. read_csv('zomato.csv',encoding="ISO-8859-1")
df = data.copy()
df.head()
登录后复制

图片

这个数据集合有21列,9551行。

只需要针对地址列来进行地理编码,所以去掉所有其他的列。然后,再去掉重复记录,最后只得到地址列信息。

df = df[['地址']]
df = df. drop_duplicates()
登录后复制

再看一下数据框架的头部,在处理之后就只看到地址信息了。

图片

接下来,就可以开始地理编码了。

(3)地理编码

首先,用Python访问我们的API密钥,运行下面几行代码来完成这个任务。

gmaps_key = googlemaps.Client(key="your_API_key")
登录后复制

现在,让我们先尝试对一个地址进行地理编码,并看看输出结果。

add_1 = df['地址'][0]
g = gmaps_key. geocode(add_1)
lat = g[0]["geometry"]["location"]["lat"]
long = g[0]["geometry"]["location"]["lng"]
print('Latitude: '+str(lat)+', Longitude: '+str(long))
登录后复制

运行上述代码,得到类似如下的输出结果。

图片

如果你得到上述输出,很好!表示一切顺利。我们可以针对整个数据集应用类似的处理,过程如下:

def geocode(add):
g = gmaps_key. geocode(add)
lat = g[0]["geometry"]["location"]["lat"]
lng = g[0]["geometry"]["location"]["lng"]
return(lat, lng)。
df['geocoded'] = df['Address']. apply(geocode)
登录后复制

再次检查数据集合的头部,看看代码是否生效。

df.head()
登录后复制

图片

如果输出类似上面的截图,恭喜你!你已经成功地对整个数据框架中的地址进行了地理编码。

5、OpenStreetMap API

OpenStreetMap API是完全免费的,但与谷歌地图API相比,速度较慢,精确度较低。这个API无法定位数据集中的许多地址,所以这次我们将使用地点栏来代替。在开始学习教程之前,让我们先看看地址栏和位置栏的区别。运行下面几行代码来完成这个任务。

print('Address: '+data['Address'][0]+'nnLocality: '+data['Locality'][0] )
登录后复制

图片

地址栏(Address)比地点(Locality)栏细化得多,它提供了餐厅的确切位置,包括楼层号。这可能是地址不被OpenStreetMap API识别,而地点却被识别的原因。

让我们对第一个Locality进行地理编码,看看输出结果。

地理编码

运行以下几行代码。

Import url
Import requests

data = data[['Locality']]

url = 'https://nominatim.openstreetmap.org/search/' + urllib. parse. quote(df['Locality'][0]) +'?format=json' 。
response = requests.get(url).json()
print('Latitude: '+response[0]['lat']+', Longitude: '+response[0]['lon'] )
登录后复制

左右滑动查看完整代码

上述代码的输出与谷歌地图API生成的结果非常相似。

图片

现在,让我们创建一个函数来寻找整个数据集合的坐标。

def geocode2(locality):
url = 'https://nominatim.openstreetmap.org/search/' + urllib. parse. quote(locality) +'?format=json'
response = requests.get(url).json()
if (len(response)!=0)。
return(response[0]['lat'], response[0]['lon'] )
else:
return('-1')

data['geocoded'] = data['Locality']. apply(geocode2)
登录后复制

很好!现在,让我们来看看数据集合的头部。

Data.head(15)
登录后复制

请注意,这个API无法为数据集合中的一些地方提供坐标。

虽然它是谷歌地图API的免费替代品,如果用OpenStreetMap进行地理编码,有可能会失去大量的数据。本教程到此结束!希望你从这里学到了一些新的东西,并对处理地理空间数据有了更好的理解。

原文链接:https://www.kdnuggets.com/2022/11/geocoding-python-complete-guide.html

译者介绍

崔皓,51CTO社区编辑,资深架构师,拥有18年的软件开发和架构经验,10年分布式架构经验。

以上是全解Python的地理编码的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前 By 尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

如何在LAMP架构下高效整合Node.js或Python服务? 如何在LAMP架构下高效整合Node.js或Python服务? Apr 01, 2025 pm 02:48 PM

在LAMP架构下整合Node.js或Python服务许多网站开发者都面临这样的问题:已有的LAMP(Linux Apache MySQL PHP)架构网站需要...

使用Scapy爬虫时,管道持久化存储文件无法写入的原因是什么? 使用Scapy爬虫时,管道持久化存储文件无法写入的原因是什么? Apr 01, 2025 pm 04:03 PM

使用Scapy爬虫时,管道持久化存储文件无法写入的原因探讨在学习使用Scapy爬虫进行数据抓取时,经常会遇到一�...

Python进程池处理并发TCP请求导致客户端卡死的原因是什么? Python进程池处理并发TCP请求导致客户端卡死的原因是什么? Apr 01, 2025 pm 04:09 PM

Python进程池处理并发TCP请求导致客户端卡死的解析在使用Python进行网络编程时,高效处理并发TCP请求至关重要。...

如何查看Python functools.partial对象内部封装的原始函数? 如何查看Python functools.partial对象内部封装的原始函数? Apr 01, 2025 pm 04:15 PM

深入探讨Pythonfunctools.partial对象的查看方法在使用Python的functools.partial...

如何解决Linux终端中查看Python版本时遇到的权限问题? 如何解决Linux终端中查看Python版本时遇到的权限问题? Apr 01, 2025 pm 05:09 PM

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

Python跨平台桌面应用开发:哪个GUI库最适合你? Python跨平台桌面应用开发:哪个GUI库最适合你? Apr 01, 2025 pm 05:24 PM

Python跨平台桌面应用开发库的选择许多Python开发者都希望开发出能够在Windows和Linux系统上都能运行的桌面应用程...

Python沙漏图形绘制:如何避免变量未定义错误? Python沙漏图形绘制:如何避免变量未定义错误? Apr 01, 2025 pm 06:27 PM

Python入门:沙漏图形绘制及输入校验本文将解决一个Python新手在沙漏图形绘制程序中遇到的变量定义问题。代码...

如何用Python高效统计并排序大型商品数据集? 如何用Python高效统计并排序大型商品数据集? Apr 01, 2025 pm 08:03 PM

数据转换与统计:高效处理大型数据集本文将详细介绍如何将一个包含商品信息的数据列表,转换为另一个包含...

See all articles