目录
1. 行人识别与追踪
2. 训练多标签分类网络
下载PaddleClas
首页 科技周边 人工智能 AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

Apr 14, 2023 pm 06:25 PM
网络 ai yolo

今天给大家分享一个行人属性分析系统。从视频或者相机的视频流中能识别行人,并标记每个人的属性。

AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

识别的属性包括以下 10 类

AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

有些类别有多个属性,如果身体朝向有:正面、侧面和背面,所以,最终训练的属性有 26 个。

实现这样的系统需要 3 个步骤:

  • 用 YOlOv5 识别行人
  • 用 ByteTrack 跟踪标记同一个人
  • 训练多标签图像分类网络,识别行人 26 个属性

1. 行人识别与追踪

行人识别使用YOLOv5​目标检测模型,可以自己训练模型,也可以直接使用YOLOv5预训练好的模型。

行人追踪使用的是多目标跟踪技术(MOT)​技术,视频是由一幅幅画面组成,虽然我们人类能够识别出不同画面中的同一个人, 但如果不对行人做追踪,AI​是无法识别的。需要用MOT技术追踪同一个人并给每个行人分配唯一的ID。

YOLOv5​模型的训练、使用,以及多目标跟踪技术(MOT)​技术的原理、实现方案,在上一篇文章有详细的教程,感兴趣的朋友可以查看那边文章《YOLOv5 ByteTrack统计车流》。

2. 训练多标签分类网络

我们最开始接触的图像分类大部分是单标签分类​的,即:一张AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络归为1类,类别可以是二分类​也可以是多分类​。假设有三个类别,每一张AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络对应的label可能是下面这总格式:

001.jpg010
002.jpg100
003.jpg100
登录后复制

label​只有一个位置是1。

而我们今天要训练的多标签分类网络​是一张AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络同时包含多个类别,label格式如下:

001.jpg011
002.jpg111
003.jpg100
登录后复制

label​可以有多个位置是1。

训练这样的网络,有两种方案。一种是把每个类别看成是单标签分类,单独计算损失,汇总总,计算梯度更新网络参数。

另一种可以直接训练,但对需要注意网络细节,以ResNet50为例

resnet50 = ResNet50(include_top=False, weights='imagenet')

# 迁移学习,不重新训练卷积层
for layer in resnet50.layers:
layer.trainable = False

# 新的全连接层
x = Flatten()(resnet50.output)
x = Dense(1024)(x)
x = Activation('relu')(x)
x = BatchNormalization()(x)
x = Dropout(0.5)(x)

# 输出 26 个属性的多分类标签
x = Dense(26, activatinotallow='sigmoid')(x)

model = Model(inputs = resnet50.input, outputs=x)
登录后复制

最后输出层的激活函数​必须要sigmoid​,因为需要每个属性单独计算概率。同理,训练时的损失函数也需要用二分类​交叉熵binary_crossentropy。

实际上,上面两种方法原理都是类似的,只不过开发的工作量不同。

这里为了方便,我使用的是PaddleCls​进行训练。Paddle的配置简单,缺点是有点黑盒,只能按照他那一套来,需要自定义的地方就比较麻烦。

模型训练使用的是PA100K​数据集,需要注意的是,PA100K​数据集定义的原始label与Paddle虽然含义相同,但顺序不同。

如:原始label​第1位代表是否是女性​,而Paddle​要求第1位代表是否戴帽子​,第22位才是是否是女性。

AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

我们按照Paddle​的要求调整下原始label位置即可,这样我们后面推理会方便些。

下载PaddleClas

git clone https://github.com/PaddlePaddle/PaddleClas
登录后复制

将下载的数据集解压,放到PaddleClas的dataset目录。

找到ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml​配置文件,配置AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络和label路径。

DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/" #指定训练AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络所在根路径
cls_label_path: "dataset/pa100k/train_list.txt" #指定训练列表文件位置
label_ratio: True
transform_ops:

Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/pa100k/" #指定评估AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络所在根路径
cls_label_path: "dataset/pa100k/val_list.txt" #指定评估列表文件位置
label_ratio: True
transform_ops:
登录后复制

train_list.txt的格式为

00001.jpg0,0,1,0,....
登录后复制

配置好后,就可以直接训练了

python3 tools/train.py 
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml
登录后复制

训练完后,导出模型

python3 tools/export_model.py 
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml 
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model 
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_person_attribute_infer
登录后复制

将导出的结果放在~/.paddleclas/inference_model/PULC/person_attribute/目录下

AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络

便可以使用PaddleCls提供的函数直接调用

import paddleclas

model = paddleclas.PaddleClas(model_name="person_attribute")

result = model.predict(input_data="./test_imgs/000001.jpg")

print(result)
登录后复制

输出结果如下:

[{'attributes': ['Female', 'Age18-60', 'Front', 'Glasses: False', 'Hat: False', 'HoldObjectsInFront: True', 'ShoulderBag', 'Upper: ShortSleeve', 'Lower:Trousers', 'No boots'], 'output': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], 'filename': './test_imgs/000001.jpg'}]
登录后复制

模型训练过程就到这里了,数据集和整个项目的源码已经打包好了。

以上是AI已经把你看得明明白白,YOLO ByteTrack 多标签分类网络的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

web3交易平台排行榜_web3全球交易所前十名汇总 web3交易平台排行榜_web3全球交易所前十名汇总 Apr 21, 2025 am 10:45 AM

币安是全球数字资产交易生态的霸主,其特点包括:1. 日均交易量突破$1500亿,支持500 交易对,覆盖98%主流币种;2. 创新矩阵涵盖衍生品市场、Web3布局和教育体系;3. 技术优势为毫秒级撮合引擎,峰值处理量达140万笔/秒;4. 合规进展持有15国牌照,并在欧美设立合规实体。

币圈杠杆交易所排名 币圈十大杠杆交易所APP最新推荐 币圈杠杆交易所排名 币圈十大杠杆交易所APP最新推荐 Apr 21, 2025 pm 11:24 PM

2025年在杠杆交易、安全性和用户体验方面表现突出的平台有:1. OKX,适合高频交易者,提供最高100倍杠杆;2. Binance,适用于全球多币种交易者,提供125倍高杠杆;3. Gate.io,适合衍生品专业玩家,提供100倍杠杆;4. Bitget,适用于新手及社交化交易者,提供最高100倍杠杆;5. Kraken,适合稳健型投资者,提供5倍杠杆;6. Bybit,适用于山寨币探索者,提供20倍杠杆;7. KuCoin,适合低成本交易者,提供10倍杠杆;8. Bitfinex,适合资深玩

WorldCoin(WLD)价格预测2025-2031:到2031年WLD会达到4美元吗? WorldCoin(WLD)价格预测2025-2031:到2031年WLD会达到4美元吗? Apr 21, 2025 pm 02:42 PM

WorldCoin(WLD)凭借其独特的生物识别验证和隐私保护机制,在加密货币市场中脱颖而出,吸引了众多投资者的目光。 WLD凭借其创新技术,特别是结合OpenAI人工智能技术,在众多山寨币中表现突出。但未来几年,数字资产的走势如何呢?让我们一起预测WLD的未来价格。 2025年WLD价格预测预计2025年WLD将实现显着增长。市场分析显示,WLD平均价格可能达到1.31美元,最高可能触及1.36美元。然而,在熊市情况下,价格可能跌至0.55美元左右。这一增长预期主要源于WorldCoin2.

虚拟币价格上涨或者下降是为什么 虚拟币价格上涨或者下降的原因 虚拟币价格上涨或者下降是为什么 虚拟币价格上涨或者下降的原因 Apr 21, 2025 am 08:57 AM

虚拟币价格上涨因素包括:1.市场需求增加,2.供应量减少,3.利好消息刺激,4.市场情绪乐观,5.宏观经济环境;下降因素包括:1.市场需求减少,2.供应量增加,3.利空消息打击,4.市场情绪悲观,5.宏观经济环境。

跨链交易什么意思?跨链交易所有哪些? 跨链交易什么意思?跨链交易所有哪些? Apr 21, 2025 pm 11:39 PM

支持跨链交易的交易所有:1. Binance,2. Uniswap,3. SushiSwap,4. Curve Finance,5. Thorchain,6. 1inch Exchange,7. DLN Trade,这些平台通过各种技术支持多链资产交易。

币圈交易所前十的平台是哪些? 币圈交易所前十的平台是哪些? Apr 21, 2025 pm 12:21 PM

头部交易所包括:1. 币安(Binance),全球最大交易量,支持600 币种,现货手续费0.1%;2. OKX,均衡型平台,支持708交易对,永续合约手续费0.05%;3. Gate.io,覆盖2700 小币种,现货手续费0.1%-0.3%;4. Coinbase,美国合规标杆,现货手续费0.5%;5. Kraken,安全性顶尖,定期储备审计。

如何在币安拿下 KERNEL 空投奖励 全流程攻略 如何在币安拿下 KERNEL 空投奖励 全流程攻略 Apr 21, 2025 pm 01:03 PM

在加密货币的繁华世界里,新机遇总是不断涌现。当下,KernelDAO (KERNEL) 空投活动正备受瞩目,吸引着众多投资者的目光。那么,这个项目究竟是什么来头?BNB Holder 又能从中获得怎样的好处?别急,下面将为你一一揭晓。

十大加密货币交易所平台 世界最大的数字货币交易所榜单 十大加密货币交易所平台 世界最大的数字货币交易所榜单 Apr 21, 2025 pm 07:15 PM

在当今的加密货币市场中,交易所扮演着至关重要的角色,它们不仅是投资者进行买卖交易的平台,更是市场流动性和价格发现的重要来源。全球最大的虚拟货币交易所排行前十,这些交易所不仅在交易量上遥遥领先,而且在用户体验、安全性和创新服务方面也各有千秋。排行榜首的交易所通常拥有庞大的用户基础和广泛的市场影响力,它们的交易量和资产种类往往是其他交易所难以企及的。

See all articles