目录
模型简介
实验及结果
首页 科技周边 人工智能 推理速度比Stable Diffusion快2倍,生成、修复图像谷歌一个模型搞定,实现新SOTA

推理速度比Stable Diffusion快2倍,生成、修复图像谷歌一个模型搞定,实现新SOTA

Apr 14, 2023 pm 06:49 PM
模型

文本到图像生成是 2022 年最火的 AIGC 方向之一,被《science》评选为 2022 年度十大科学突破。最近,谷歌的一篇文本到图像生成新论文《Muse: Text-To-Image Generation via Masked Generative Transformers》又引起高度关注。

图片

  • 论文地址:https://arxiv.org/pdf/2301.00704v1.pdf
  • 项目地址:https://muse-model.github.io/

该研究提出了一种使用掩码图像建模方法进行文本到图像合成的新模型,其中的图像解码器架构以来自预训练和 frozen T5-XXL 大型语言模型 (LLM) 编码器的嵌入为条件。

与谷歌先前的 Imagen 模型类似,该研究发现基于预训练 LLM 进行调整对于逼真、高质量的图像生成至关重要。Muse 模型是建立在 Transformer (Vaswani et al., 2017) 架构之上。

与建立在级联像素空间(pixel-space)扩散模型上的 Imagen (Saharia et al., 2022) 或 Dall-E2 (Ramesh et al., 2022) 相比,Muse 由于使用了离散 token,效率显著提升。与 SOTA 自回归模型 Parti (Yu et al., 2022) 相比,Muse 因使用并行解码而效率更高。

基于在 TPU-v4 上的实验结果,研究者估计 Muse 在推理速度上比 Imagen-3B 或 Parti-3B 模型快 10 倍以上,比 Stable Diffusion v1.4 (Rombach et al., 2022) 快 2 倍。研究者认为:Muse 比 Stable Diffusion 推理速度更快是因为 Stable Diffusion v1.4 中使用了扩散模型,在推理时明显需要更多次迭代。

另一方面,Muse 效率的提升没有造成生成图像质量下降、模型对输入文本 prompt 的语义理解能力降低的问题。该研究根据多个标准评估了 Muse 的生成结果,包括 CLIP 评分 (Radford et al., 2021) 和 FID (Heusel et al., 2017)。Muse-3B 模型在 COCO (Lin et al., 2014) 零样本验证基准上取得了 0.32 的 CLIP 分数和 7.88 的 FID 分数。

下面我们看看 Muse 生成效果:

文本 - 图像生成:Muse 模型从文本提示快速生成高质量的图像(在 TPUv4 上,对于 512x512 分辨率的图像需要时间为 1.3 秒,生成 256x256 分辨率的图像需要时间为 0.5 秒)。例如生成「一只熊骑着自行车,一只鸟栖息在车把上」:

图片

Muse 模型通过对文本提示条件下的图像 token 进行迭代重新采样,为用户提供了零样本、无掩码编辑(mask-free editing)。

图片

Muse 还提供了基于掩码的编辑,例如「在美丽的秋叶映照下,有一座凉亭在湖上」。

图片

模型简介

Muse 建立在许多组件之上,图 3 提供了模型体系架构概述。

图片

具体而言所包含的组件有:

预训练文本编码器:该研究发现利用预训练大型语言模型(LLM)可以提高图像生成质量。他们假设,Muse 模型学会了将 LLM 嵌入中的丰富视觉和语义概念映射到生成的图像。给定一个输入文本字幕,该研究将其通过冻结的 T5-XXL 编码器,得到一个 4096 维语言嵌入向量序列。这些嵌入向量线性投影到 Transformer 模型。

使用 VQGAN 进行语义 Tokenization:该模型的核心组件是使用从 VQGAN 模型获得的语义 token。其中,VQGAN 由一个编码器和一个解码器组成,一个量化层将输入图像映射到一个学习码本中的 token 序列。该研究全部使用卷积层构建编码器和解码器,以支持对不同分辨率图像进行编码。

基础模型:基础模型是一个掩码 transformer,其中输入是投影到 T5 的嵌入和图像 token。该研究保留所有的文本嵌入(unmasked),随机掩码不同比例的图像 token,并用一个特殊的 [mask] token 替换它们。

超分辨率模型:该研究发现使用级联模型是有益的:首先是生成 16 × 16 潜在映射(对应于 256 × 256 图像)的基础模型,然后是将基础的潜在映射上采样到的超分辨率模型,也就是 64 × 64 的潜在映射(对应于一个 512 × 512 的图像)。

解码器微调:为了进一步提高模型生成精细细节的能力,该研究通过添加更多的残差层和通道来增加 VQGAN 解码器的容量,同时保持编码器容量不变。然后微调新的解码器层,同时冻结 VQGAN 编码器权重、码本和 transformer(即基础模型和超分辨率模型)。

除了以上组件外,Muse 还包含可变掩码比率组件、在推理时迭代并行解码组件等。

实验及结果

如下表所示,与其他模型相比,Muse 缩短了推理时间。

图片

下表为不同模型在 zero-shot COCO 上测量的 FID 和 CLIP 得分:

图片

如下表所示,Muse(632M (base)+268M (super-res) 参数模型)在 CC3M 数据集上训练和评估时得到了 6.06 的 SOTA FID 分数。

图片

下图是 Muse 与 Imagen、DALL-E 2 在相同 prompt 下生成结果的例子。

图片

感兴趣的读者可以阅读论文原文,了解更多研究细节。

以上是推理速度比Stable Diffusion快2倍,生成、修复图像谷歌一个模型搞定,实现新SOTA的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

热门话题

Java教程
1655
14
CakePHP 教程
1414
52
Laravel 教程
1307
25
PHP教程
1253
29
C# 教程
1228
24
全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt 时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt Mar 18, 2024 am 09:20 AM

今天我想分享一个最新的研究工作,这项研究来自康涅狄格大学,提出了一种将时间序列数据与自然语言处理(NLP)大模型在隐空间上对齐的方法,以提高时间序列预测的效果。这一方法的关键在于利用隐空间提示(prompt)来增强时间序列预测的准确性。论文标题:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下载地址:https://arxiv.org/pdf/2403.05798v1.pdf1、问题背景大模型

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

See all articles