一颗GPU,秒出3D模型!OpenAI重磅新作:Point-E用文本即可生成三维点云模型
席卷AI世界的下一个突破在哪里?
很多人预测,是3D模型生成器。
继年初推出的DALL-E 2用天才画笔惊艳所有人之后,周二OpenAI发布了最新的图像生成模型「POINT-E」,它可通过文本直接生成3D模型。
论文链接:https://arxiv.org/pdf/2212.08751.pdf
相比竞争对手们(如谷歌的DreamFusion)需要几个GPU工作数个小时,POINT-E只需单个GPU便可在几分钟内生成3D图像。
经小编实战测试,Prompt输入后POINT-E基本可以秒出3D图像,此外输出图像还支持自定义编辑、保存等功能。
地址:https://huggingface.co/spaces/openai/point-e
网友也开始尝试不同的prompt输入。
但输出的结果并不都令人满意。
还有网友表示,POINT-E或许可以实现Meta的元宇宙愿景?
需要注意的是,POINT-E是通过点云(point cloud),也就是空间中点的数据集来生成3D图像。
简单来说,就是通过三维模型进行数据采集获取空间中代表3D形状的点云数据。
从计算的角度来看,点云更容易合成,但它们无法捕获对象的细腻形状或纹理,这是目前Point-E的一个短板。
为解决这个限制,Point-E团队训练了一个额外的人工智能系统来将Point-E 的点云转换为网格。
将Point-E点云转换为网格
在独立的网格生成模型之外,Point-E 由两个模型组成:
一个文本图像转化模型(text-to-image model)和图像转化3D模型(image-to-3D model)。
文本图像转化模型类似于OpenAI的DALL-E 2和Stable Diffusion,在标记图像上进行训练以理解单词和视觉概念间的关联。
然后,将一组与3D对象配对图像输入3D转化模型,以便模型学会在两者之间有效转换。
当输入一个prompt时,文本图像转化模型会生成一个合成渲染对象,该对象被馈送到图像转化3D模型,然后生成点云。
OpenAI研究人员表示,Point-E经历了数百万3D对象和相关元数据的数据集的训练。
但它并不完美,Point-E 的图像到 3D 模型有时无法理解文本到图像模型中的图像,导致形状与文本提示不匹配。尽管如此,它仍然比以前的最先进技术快几个数量级。
他们在论文中写道:
虽然我们的方法在评估中的表现比最先进的技术差,但它只用了一小部分时间就可以生成样本。这可以使它对某些应用程序更实用,并且发现更高质量的3D对象。
Point-E架构与运行机制
Point-E模型首先使用文本到图像的扩散模型生成一个单一的合成视图,然后使用第二个扩散模型生成一个三维点云,该模型以生成的图像为条件。
虽然该方法在采样质量方面仍未达到最先进的水平,但它的采样速度要快一到两个数量级,为一些使用情况提供了实际的权衡。
下图是该模型的一个high-level的pipeline示意图:
我们不是训练单个生成模型,直接生成以文本为条件的点云,而是将生成过程分为三个步骤。
首先,生成一个以文本标题为条件的综合视图。
接下来,生成⼀个基于合成视图的粗略点云(1,024 个点) 。
最后, 生成了⼀个以低分辨率点云和合成视图为条件的精细点云(4,096 个点)。
在数百万个3D模型上训练模型后,我们发现数据集的数据格式和质量差异很大,这促使我们开发各种后处理步骤,以确保更高的数据质量。
为了将所有的数据转换为⼀种通用格式,我们使用Blender从20个随机摄像机角度,将每个3D模型渲染为RGBAD图像(Blender支持多种3D格式,并带有优化的渲染引擎)。
对于每个模型,Blender脚本都将模型标准化为边界立方体,配置标准照明设置,最后使用Blender的内置实时渲染引擎,导出RGBAD图像。
然后,使用渲染将每个对象转换为彩色点云。首先,通过计算每个RGBAD图像中每个像素的点,来为每个对象构建⼀个密集点云。这些点云通常包含数十万个不均匀分布的点,因此我们还使用最远点采样,来创建均匀的4K点云。
通过直接从渲染构建点云,我们能够避免直接从3D网格中采样可能出现的各种问题,对模型中包含的点进行取样,或处理以不寻常的文件格式存储的三维模型。
最后,我们采用各种启发式方法,来减少数据集中低质量模型的频率。
首先,我们通过计算每个点云的SVD来消除平面对象,只保留那些最小奇异值高于某个阈值的对象。
接下来,我们通过CLIP特征对数据集进行聚类(对于每个对象,我们对所有渲染的特征进行平均)。
我们发现,一些集群包含许多低质量的模型类别,而其他集群则显得更加多样化或可解释。
我们将这些集群分到几个不同质量的bucket中,并使用所得bucket的加权混合作为我们的最终数据集。
应用前景
OpenAI 研究人员指出,Point-E的点云还可用于制造真实世界的物体,比如3D打印。
通过额外的网格转换模型,该系统还可以进入游戏和动画开发工作流程。
虽然目前的目光都集中在2D艺术生成器上,但模型合成人工智能可能是下一个重大的行业颠覆者。
3D模型广泛应用于影视、室内设计、建筑和各种科学领域。
当下3D模型的制造耗时通常需要几个小时,而Point-E的出现恰恰弥补了这一缺点。
研究人员表示现阶段Point-E还存在许多缺陷,如从训练数据中继承的偏差以及对于可能用于创建危险物体的模型缺乏保护措施。
Point-E只是个起点,他们希望它能激发文本到3D合成领域的「进一步工作」。
以上是一颗GPU,秒出3D模型!OpenAI重磅新作:Point-E用文本即可生成三维点云模型的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对
