目录
GPT-4初具AGI雏形
多模态和跨学科能力
编程能力
数学能力
与世界互动
与人类互动
局限性
马库斯发文反驳
强大作者阵容
首页 科技周边 人工智能 震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

Apr 16, 2023 am 10:43 AM
人工智能 gpt-4

GPT-4会演变为通用人工智能吗?

Meta首席人工智能科学家、图灵奖得主Yann LeCun对此表示质疑。

在他看来,大模型对于数据和算力的需求实在太大,学习效率却不高,因此学习「世界模型」才能通往AGI之路。

不过,微软最近发表的154页论文,似乎就很打脸。

在这篇名为「Sparks of Artificial General Intelligence: Early experiments with GPT-4」的论文中,微软认为,虽然还不完整,但GPT-4已经可以被视为一个通用人工智能的早期版本。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

论文地址:https://arxiv.org/pdf/2303.12712.pdf

鉴于 GPT-4 能力的广度和深度,我们相信它应该被合理视作一个通用人工智能(AGI)系统的早期(但仍不完整)版本。


本文的主要目标是对 GPT-4 的能力和局限性进行探索,我们相信 GPT-4 的智能标志着计算机科学及其他领域的真正范式转变。

AGI的智能体现在能够像人类一样思考和推理,并且还能够涵盖广泛的认知技能和能力。

论文中,指出AGI具有推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和经验学习能力

从参数规模上来看,Semafor报道称GPT-4有1万亿个参数,是GPT-3(1750亿个参数)的6倍大。

网友用GPT参数规模大脑神经元做了类比:

GPT-3的规模与刺猬大脑类似(1750亿个参数)。如果GPT-4拥有1万亿个参数,我们就接近松鼠大脑的规模了。以这个速度发展下去,也许只需要几年时间,我们就能达到并超越人类大脑的规模(170万亿参数)。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

由此看来,GPT-4距离成为「天网」也不远了。

而这篇论文,还被扒出不少趣事。

论文发布不久后,一位网友在推特上爆出从他们的latex源代码中发现了隐藏信息。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

在未删减版的论文中,GPT-4实际上也是该论文的隐藏第三作者,内部名称 DV-3,后被删除。

有趣的是,就连微软研究人员对GPT-4的技术细节并不清楚。另外,这篇论文还删除了GPT-4在没有任何提示的情况下产生的有毒内容。

GPT-4初具AGI雏形

这篇论文的研究对象,是GPT-4的早期版本。它还处于早期开发阶段时,微软的研究者就对它进行了各种实验和测评。

在研究者看来,这个早期版本的GPT-4,就已经是新一代LLM的代表,并且相较于之前的人工智能模型,展现出了更多的通用智能。

通过测试,微软的研究者证实:GPT-4不仅精通语言,还能在数学、编程、视觉、医学、法律、心理学等多样化和高难度的任务中表现出色,且无需特别提示。

令人惊奇的是,在所有这些任务中,GPT-4 的表现已经接近人类水平,并且时常超过之前的模型,比如ChatGPT。

因此,研究者相信,鉴于GPT-4在广度和深度上的能力,它可以被视为通用人工智能(AGI)的早期版本。

那么,它朝着更深入、更全面的AGI前进的路上,还有哪些挑战呢?研究者认为,或许需要寻求一种超越「预测下一个词」的新范式。

如下关于GPT-4能力的测评,便是微软研究人员给出关于GPT-4是AGI早期版本的论据。

多模态和跨学科能力

自GPT-4发布后,大家对其多模态能力的印象还停留在Greg Brockman当时演示的视频上。

这篇论文第二节中,微软最先介绍了它的多模态能力。

GPT-4不仅在文学、医学、法律、数学、物理科学和程序设计等不同领域表现出高度熟练程度,而且它还能够将多个领域的技能和概念统一起来,并能理解其复杂概念。

综合能力

研究人员分别用以下4个示例来展示GPT-4在综合能力方面的表现。

第一个示例中,为了测试GPT-4将艺术和编程结合的能力,研究人员要求GPT-4生成 javascript代码,以生成画家 Kandinsky风格的随机图像。

如下为GPT-4实现代码过程:

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

在文学和数学结合上,GPT-4能够以莎士比亚的文学风格证明质数是无穷多的。

此外,研究还测试了GPT-4将历史知识和物理知识结合起来的能力,通过要求其撰写一封支持Electron竞选美国总统的信,信是由圣雄甘地写给他的妻子的。

通过提示GPT-4为一个程序生成python代码,该程序将患者的年龄、性别、体重、身高和血液检测结果向量作为输入,并指出患者是否处于糖尿病风险增加的状态。

通过测试,以上例子表明GPT-4不仅能够学习不同领域和风格的一些通用原则和模式,还能以创造性的方式将其结合。

视觉

当提示GPT-4使用可伸缩矢量图形(SVG)生成物体图像,如猫、卡车或字母时,该模型生成的代码通常会编译成相当详细,且可识别的图像,如下图:

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

然而,许多人可能会认为GPT-4只是从训练数据中复制了代码,其中包含类似的图像。

其实GPT-4不仅是从训练数据中的类似示例中复制代码,而且能够处理真正的视觉任务,尽管只接受了文本训练。

如下,提示模型通过结合字母Y、O和H的形状来绘制一个人。

在生成过程中,研究人员使用draw-line和draw-circle命令创建了O、H和Y的字母,然后GPT-4设法将它们放置在一个看起是合理的人形图像中。

尽管GPT-4并没有经过关于字母形状的认识的训练,仍旧可以推断出,字母Y可能看起来像一个手臂朝上的躯干。

在第二次演示中,提示GPT-4纠正躯干和手臂的比例,并将头部放在中心位置。最后要求模型添加衬衫和裤子。

如此看来,GPT-4从相关训练数据中、模糊地学习到字母与一些特定形状有关,结果还是不错的。

为了进一步测试GPT-4生成和操作图像的能力,我们测试了它遵循详细指令创建和编辑图形的程度。这项任务不仅需要生成能力,还需要解释性、组合性和空间性能力。

第一个指令是让GPT-4生成2D图像,prompt为:

「A frog hops into a bank and asks the teller, ‘Do you have any free lily pads?’ The teller responds, ‘No, but we do o er low interest loans for pond upgrades」

通过多次尝试,GPT-4每一次都生成符合描述的图像。然后,要求GPT-4添加更多细节来提高图形质量,GPT-4添加了银行、窗户、汽车等符合现实逻辑的物体。

我们的第二个示例是尝试使用Javascript生成一个3D模型,同样通过指令GPT-4完成了许多任务。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

另外,GPT-4在草图生成方面,能够结合运用Stable Difusion的能力。

下图为3D城市建模截图,输入提示有一条河流从左到右流淌、河的旁边建有金字塔的沙漠、屏幕底部有4个按钮,颜色分别为绿色、蓝色、棕色和红色。生成结果如下:

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

音乐

研究人员要求GPT-4用ABC记谱法编码生成和修改曲调,如下:

通过探究GPT-4在训练中获得了多少技能,研究人员发现GPT-4能够在ABC记谱法中产生有效的旋律,并在一定程度上解释和操作其中的结构。

然而,研究人员无法让GPT-4产生任何非平凡的和声形式,比如无法谱出像《欢乐颂》、《致爱丽丝》等著名的旋律。

编程能力

此外,研究人员还展示了GPT-4能够以非常高的水平进行编码能力,无论是根据指令编写代码,还是理解现有代码方面都展现出超强能力。

在根据指令编写代码方面,研究人员演示了一个让GPT-4写python函数的例子。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

代码生成后,研究人员使用软件工程面试平台LeetCode在线判断代码是否正确。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

对于大家都在用讨论LeetCode正确率仅有20%,论文作者Yi Zhang对此进行了反驳。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

另外,还让GPT-4将上表中LeetCode的准确率数据可视化为图表,结果如图所示。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

GPT-4 不仅可以完成普通的编程工作,还能胜任复杂的 3D 游戏开发。

研究者让GPT-4用JavaScript在HTML中编写3D游戏,GPT-4在零样本的情况下生成了一个满足所有要求的游戏。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

在深度学习编程中,GPT-4不仅需要数学和统计学知识,还需要对PyTorch、TensorFlow、Keras等框架和库熟悉。

研究人员要求GPT-4和ChatGPT编写一个自定义优化器模块,并为其提供了自然语言描述,其中包括一系列重要的操作,例如应用SVD等等。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

除了根据指令编写代码,GPT-4在理解代码上展现出超强的能力。

研究者尝试让GPT-4和ChatGPT读懂一段C/C++程序,并预测程序的输出结果,二者的表现如下:

标黄的地方是GPT-4富有洞察力的观点,而红色标记代表ChatGPT出错的地方。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

通过编码能力测试,研究者发现GPT-4可以处理各种编码任务,从编码挑战到实际应用,从低级汇编到高级框架,从简单数据结构到复杂的程序。

此外,GPT-4还可以推理代码执行、模拟指令的效果,并用自然语言解释结果。GPT-4甚至可以执行伪代码。

数学能力

在数学能力上,相比于之前的大语言模型,GPT-4已经取得了质的飞跃。即便是面对专门精调的Minerva,在性能上也有明显提升。

不过,距离专家水平还相去甚远。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

举个例子:每年兔子的种群数量会增加a倍,而在年底的最后一天,有b只兔子被人类领养。假设第一年的第一天有x只兔子,已知3年后兔子的数量将变为27x-26。那么,a和b的值分别是多少?

为了解决这个问题,我们首先需要得出每年兔子数量变化的正确表达式,通过这种递归关系推导出一个方程组,进而得到答案。

这里,GPT-4成功地得出了解决方案,并提出了一个合理的论点。相比之下,在几次独立尝试中,ChatGPT始终无法给出正确的推理和答案。

高等数学

接下来,我们直接上个难的。比如,下面这道出自2022年国际数学奥林匹克竞赛(IMO)的问题(简化版)。

该题与本科微积分考试的不同之处在于,它不符合结构化的模板。解决这个问题需要更有创造性的方法,因为没有明确的策略来开始证明。

例如,将论证分为两种情况(g(x) > x^2 和 g(x)

尽管如此,GPT-4还是给出了一个正确的证明。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

第二个关于算法和图论的讨论,则可以与研究生水平的面试相媲美。

对此,GPT-4能够对一个与约束满足问题相关的抽象图构造进行推理,并从中得出关于SAT问题的正确结论(据我们所知,这种构造在数学文献中并未出现)。

这次对话反映出GPT-4对所讨论的本科级数学概念的深刻理解,以及相当程度的创造力。

尽管GPT-4在一次回答中把2^n/2写成了2^n-1,但着似乎更像是我们俗称的「笔误」,因为它后来提供了公式的正确推广。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

此外,研究者在两个通常用作基准的数学数据集上比较GPT-4、ChatGPT和Minerva的性能:GSM8K和MATH 。

结果发现,GPT4在每个数据集上的测试都超过了Minerva,并且在两个测试集的准率都超过80% 。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

再来细看GPT4犯错的原因,68%都是计算错误,而不是解法错误。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

与世界互动

智能另一个关键的体现就是交互性。

交互性对于智能很重要,因为它使智能体能够获取和应用知识,解决问题,适应不断变化的情况,并实现超出其自身能力的目标。

由此,研究者从工具使用和具体的交互两个维度研究了GPT-4的交互性。GPT-4在回答如下问题时能够搜索引擎或API等外部工具。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

与人类互动

论文中, 研究者发现了GPT-4可以建立人类的心智模型。

研究设计了一系列测试来评估GPT-4、ChatGPT和text-davinci-003的心智理论的能力。比如理解信仰,GPT-4成功通过了心理学中的Sally-Anne错误信念测试。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

还有测试GPT-4在复杂情境下推断他人情绪状态能力的表现:

-汤姆为什么做出悲伤的表情?-亚当认为是什么导致了汤姆的悲伤表情?

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

通过多轮测试,研究人员发现在需要推理他人心理状态,并提出符合现实社交场景中的方案,GPT-4表现优于ChatGPT和text-davinci-003。

局限性

GPT-4所采用的「预测下一个词」模式,存在着明显的局限性:模型缺乏规划、工作记忆、回溯能力和推理能力。

由于模型依赖于生成下一个词的局部贪婪过程,而没有对任务或输出的全局产生深入的理解。因此,GPT-4擅长生成流畅且连贯的文本,但不擅长解决无法以顺序方式处理的复杂或创造性问题。

比如,用范围在0到9之间的四个随机数进行乘法和加法运算。在这个连小学生都能解决的问题上,GPT-4的准确率仅为58%。

当数字在10到19之间,以及在20到39之间时,准确率分别降至16%和12%。当数字在99到199的区间时,准确率直接降至0。

然而,如果让 GPT-4「花时间」回答问题,准确率很容易提高。比如要求模型使用以下提示写出中间步骤:

116 * 114 + 178 * 157 = ?

让我们一步一步思考,写下所有中间步骤,然后再产生最终解。

此时,当数字在1-40的区间时,准确率高达100%,在1-200的区间时也达到了90%。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

马库斯发文反驳

有意思的是,就在微软这篇论文发表后不久,马库斯立马写出一篇博客,称微软的观点「非常荒谬」。

并引用了圣经中的一句话「骄傲在败坏以先,狂心在跌倒之前。(箴16:18)」

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

GPT-4怎么就算得上早期AGI了?这么说的话,计算器也算,Eliza和Siri更算。这个定义就很模糊,很容易钻空子。

在马库斯看来,GPT-4和AGI没什么关系,而且GPT-4跟此前一样,缺点依旧没有解决,幻觉还存在,回答的不可靠性也没有解决,甚至作者自己都承认了复杂任务的计划能力还是不行。

他的担忧的是OpenAI和微软的这2篇论文,写的模型完全没有披露,训练集和架构什么都没有,光靠一纸新闻稿,就想宣传自己的科学性。

所以说论文里号称的「某种形式的AGI」是不存在的,科学界根本无法对其进行验证,因为也无法获得训练数据,而且似乎训练数据已经受到了污染。

更糟糕的是,OpenAI已经自己开始将用户实验纳入训练语料库了。这样混淆视听后,科学界就没法判断GPT-4的一个关键能力了:模型是否有能力可以对新测试案例进行归纳。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

如果OpenAI不在这里给自己戴上科学的高帽子,马库斯可能也不会这么批判它。

他承认GPT-4是很强大,但是风险也是众所周知。如果OpenAI缺乏透明度,并且拒绝公开模型,不如直接关停。

强大作者阵容

微软这篇长达154页的论文背后有着强大的作者阵容。

其中就包括:微软雷德蒙德研究院首席研究员、2015年斯隆奖得主Sébastien Bubeck、2023新视野数学奖得主 Ronen Eldan、2020斯隆研究奖得主Yin Tat Lee、2023新晋斯隆研究奖得主李远志。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

值得一提的是,微软团队最初定的论文题目并不是「通用人工智能的火花:GPT-4的早期实验」。

未删减论文中泄漏的latex代码显示,最初题目是「与AGI的第一次接触」。

震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?

以上是震惊科学界!微软154页研究刷屏:GPT-4能力接近人类,「天网」初现?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles