目录
记了,但记得不多
抽取结果
Diffusion vs GAN
版权问题
首页 科技周边 人工智能 还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

Apr 16, 2023 pm 02:10 PM
图像 模型

去年,图像生成模型大火,在一场大众艺术狂欢后,接踵而来的还有版权问题。

类似DALL-E 2, Imagen和Stable Diffusion等深度学习模型的训练都是在上亿的数据上进行训练的,根本无法摆脱训练集的影响,但是否某些生成的图像就完全来自于训练集?如果生成图像与原图十分类似的话,其版权又归谁所有?

最近来自谷歌、Deepmind、苏黎世联邦理工学院等多所知名大学和企业的研究人员们联合发表了一篇论文,他们发现扩散模型确实可以记住训练集中的样本,并在生成过程中进行复现。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

论文链接:​https://arxiv.org/abs/2301.13188​

在这项工作中,研究人员展示了扩散模型如何在其训练数据中记忆单个图像,并在生成时将其重新复现出来。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

文中提出一个生成和过滤(generate-and-filter)的pipeline,从最先进的模型中提取了一千多个训练实例,覆盖范围包含人物的照片、商标的公司标志等等。并且还在不同的环境中训练了数百个扩散模型,以分析不同的建模和数据决定如何影响隐私。

总的来说,实验结果显示,扩散模型对训练集的隐私保护比之前的生成模型(如GANs)要差得多。

记了,但记得不多

去噪扩散模型(denoising diffusion model)是近期兴起的新型生成式神经网络,通过迭代去噪的过程从训练分布中生成图像,比之前常用的GAN或VAE模型生成效果更好,并且更容易扩展模型和控制图像生成,所以也迅速成为了各种高分辨率图像生成的主流方法。

尤其是OpenAI发布DALL-E 2之后,扩散模型迅速火爆了整个AI生成领域。

生成式扩散模型的吸引力源于其合成表面上与训练集中的任何东西都不同的新图像的能力,事实上,过去的大规模训练工作「没有发现过拟合的问题」,而隐私敏感领域(privacy sensitive domain)的研究人员甚至提出,扩散模型可以通过合成图像来「保护真实图像的隐私」

不过这些工作都依赖于一个假设:即扩散模型不会记忆并再次生成训练数据,否则就会违反隐私保证,并引起诸多关于模型泛化和数字伪造(digital forgery)的问题。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

但事实果真如此吗?

要想判断生成的图像是否来自于训练集,首先需要定义什么是「记忆」(memorization)

之前的相关工作主要集中在文本语言模型上,如果模型能够逐字从训练集中恢复一个逐字记录的序列,那么这个序列就被称为「提取」和「记忆」了;但因为这项工作是基于高分辨率的图像,所以逐字逐句匹配的记忆定义并不适合。

下面是研究人员定义的一个基于图像相似性度量的记忆。

如果一个生成的图像x,并且与训练集中多个样本之间的距离(distance)小于给定阈值,那么该样本就被视为从训练集中得到的,即Eidetic Memorization.

然后,文中设计了一个两阶段的数据抽取攻击(data extraction attack)方法:

1. 生成大量图像

第一步虽然很简单,但计算成本很高:使用选定的prompt作为输入,以黑盒的方式生成图像。

研究人员为每个文本提示生成500张候选图像以增加发现记忆的几率。

2. 进行Membership Inference

把那些疑似是根据训练集记忆生成的图像标记出来。

研究人员设计的成员推理攻击策略基于以下思路:对于两个不同的随机初始种子,扩散模型生成的两张图像相似概率会很大,并且有可能在距离度量下被认为是根据记忆生成的。

抽取结果

为了评估攻击效果,研究人员从训练数据集中选择了35万个重复率最高的例子,并为每个提示生成500张候选图像(总共生成了1.75亿张图像)。

首先对所有这些生成的图像进行排序,通过在团(clique)中的图像之间的平均距离来识别那些可能通过记忆训练数据生成的图像。

然后把这些生成的图像与训练图像进行比较,将每张图像标注为「extracted」和「not extracted」,最终发现了94张疑似从训练集中抽取的图像。

通过视觉分析,将排名top 1000的图片手动标注为「memorized」或「not memorized」,其中发现还有13张图片是通过复制训练样本生成的。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

从P-R曲线上来看,这种攻击方式是非常精确的:在1.75亿张生成的图像中,可以识别出50张被记住的图像,而假阳性率为0;并且所有根据记忆生成的图像都可以被提取出来,精确度高于50%

为了更好地理解记忆是如何以及为什么会发生的,研究人员还在CIFAR10上训练了数百个较小扩散模型,以分析模型精度、超参数、增强和重复数据删除对隐私的影响。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

Diffusion vs GAN

与扩散模型不同的是,GANs并没有明确被训练来记忆和重建其训练数据集。

GANs由两个相互竞争的神经网络组成:一个生成器和一个判别器。生成器同样接收随机噪声作为输入,但与扩散模型不同的是,它必须在一次前向传递中把这种噪声转换成有效图像。

训练GAN的过程中,判别器需要预测图像是否来自于生成器,而生成器需要提升自己以欺骗判别器。

因此,二者的不同之处在于,GAN的生成器只使用关于训练数据的间接信息进行训练(即使用来自判别器的梯度),并没有直接接收训练数据作为输入。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

不同的预训练生成模型中抽取的100万个无条件生成的训练图像,然后按FID排序的GAN模型(越低越好)放在上面,把扩散模型放在下面。

结果显示,扩散模型比GAN模型记忆得更多,并且更好的生成模型(较低的FID)往往能记住更多的数据,也就是说,扩散模型是最不隐私的图像模型形式,其泄露的训练数据是GANs的两倍以上。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

并且从上面的结果中还可以发现,现有的隐私增强技术并不能提供一个可接受的隐私-性能权衡,想提高生成质量,就需要记住更多训练集中的数据。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

总的来说,这篇论文强调了日益强大的生成模型和数据隐私之间的矛盾,并提出了关于扩散模型如何工作以及如何负责任地部署它们的问题。

版权问题

从技术上来讲,重建(reconstruction)正是扩散模型的优势;但从版权上来说,重建就是软肋。

由于扩散模型生成的图像与训练数据之间的过于相似,艺术家们对自己的版权问题进行了各种争论。

比如禁止AI使用自己的作品进行训练,发布的作品添加大量水印等等;并且Stable Diffusion也已经宣布,它计划下一步只使用包含已授权内容的训练数据集,并提供了一个艺术家退出机制。

在NLP领域同样面临这个问题,有网友表示自1993年以来已经发布了数百万字的文本,而包括ChatGPT-3等所有AI都是在「被偷走的内容」上训练的,使用基于AI的生成模型都是不道德的。

还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」

虽说天下文章一大抄,但对普通人来说,抄袭只是一种可有可无的捷径;而对创造者来说,被抄袭的内容却是他们的心血。

在未来,扩散模型还会有优势吗?

以上是还不如GAN!谷歌、DeepMind等发文:扩散模型直接从训练集里「抄」的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! DualBEV:大幅超越BEVFormer、BEVDet4D,开卷! Mar 21, 2024 pm 05:21 PM

这篇论文探讨了在自动驾驶中,从不同视角(如透视图和鸟瞰图)准确检测物体的问题,特别是如何有效地从透视图(PV)到鸟瞰图(BEV)空间转换特征,这一转换是通过视觉转换(VT)模块实施的。现有的方法大致分为两种策略:2D到3D和3D到2D转换。2D到3D的方法通过预测深度概率来提升密集的2D特征,但深度预测的固有不确定性,尤其是在远处区域,可能会引入不准确性。而3D到2D的方法通常使用3D查询来采样2D特征,并通过Transformer学习3D和2D特征之间对应关系的注意力权重,这增加了计算和部署的

See all articles