目录
导读" >导读
自动驾驶的未来
首页 科技周边 人工智能 全面分析四大自动驾驶策略

全面分析四大自动驾驶策略

Apr 16, 2023 pm 10:13 PM
自动驾驶

导读

当前自动驾驶的策略研究还停留在具体场景执行具体策略,清华大学的研究人员在交通领域的顶会发表了一篇全面的综述,从更高级的角度分析自动驾驶策略。

当自动驾驶遇见会车,应该抢先通过,还是等待让行?

自动驾驶的策略一直是该领域的核心问题,即在交通冲突区域内,自动驾驶汽车应该如何与其他交通参与者进行合理且高效的互动。

过于激进或过于保守的策略都会对通行效率产生影响,甚至对乘坐者的生命安全造成威胁。

全面分析四大自动驾驶策略

之前对于自动驾驶策略的研究主要集中在低级详细的驾驶行为或特定的交通情况上,也就是「具体问题具体分析」,导致工程代码里可能有成千上万个if-else,而目前也缺乏对高级驾驶策略研究。

尽管研究人员对驾驶策略表现出越来越多的兴趣,但仍没有关于如何主动实施安全驾驶的全面答案。

最近,由清华大学、中科院自动化所和Intel中国研究院联合研究的成果,在交通安全领域国际顶级期刊Accident Analysis and Prevention(交通领域SSCI期刊排名第一,JCR Q1)举办的2021年年度研讨会上进行了公开展示和口头汇报,并获得了该期刊年度最佳论文奖。

全面分析四大自动驾驶策略

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0001457520317577#!

作者在分析了几种代表性驾驶策略之后,提出了三个对衡量驾驶策略很重要的特征维度:首选目标(preferred objective),风险欲望(risk appetite)和协作方式(collaborative manner)。

根据这三个特征维度,研究人员将自动驾驶汽车的现有驾驶策略分为四种:防御性驾驶策略,竞争性驾驶策略,谈判的驾驶策略和合作驾驶策略,并对这四种策略进行了比较,并找出了改善高级驾驶策略设计的可能方向。

作者认为,在面对将长期存在的混合交通流(自动驾驶汽车与传统汽车混行)时,应该主动引入路权协商机制以调和个体意图之间的矛盾。

论文的通讯作者为李志恒博士,目前是清华大学深圳研究生院副教授、博导。于2009年获清华大学自动化系控制科学与工程学科工学博士学位。主要研究方向为:智能交通系统、交通信号控制系统、交通管理规划、智能公共交通系统、智能交通大数据研究等。主持和参与国家级项目10余项。

自动驾驶的未来

近年来,自动驾驶技术被寄予厚望,人们普遍相信其有潜力重塑整个道路运输领域并解决众多实际交通问题,如道路可达性、交通效率、便利性,尤其是安全性。

然而,越来越多的研究者逐渐发现,教会自动驾驶汽车「安全行驶」绝非易事。以左转为例,2010 年美国交通部的一项研究对超过200万起事故调查后发现,左转发生的事故几率是右转的二十倍;自动驾驶领域巨头Waymo的行为团队负责人、软件工程师Nathaniel Fairfield认为:无保护的左转是自动驾驶中最棘手的事情之一;MIT机械工程系John Leonard教授也曾坦言:自动驾驶每天都有很多挑战,左转弯几乎在问题列表的最上端。

而该项工作研究团队认为,引发左转碰撞这类安全问题的本质原因是不同车辆在互动时采用的宏观策略存在差异。不同于聚焦具体场景或具体驾驶行为的微观策略,宏观策略是对决策过程典型要素的抽象,是由自动驾驶策略的硬件基础与决策机制共同决定的。

因此,这项工作主要讨论了自动驾驶汽车在与其他交通参与者互动的过程中,应该遵循何种宏观策略以避免由误判引起的碰撞风险,从而有序通过交通冲突区域。

在这项工作中,研究团队在回顾现有研究后,提出了两个用来衡量宏观驾驶策略的主要维度:

  • 协作意愿,即驾驶主体是否愿意为换取整体利益而让渡一部分个体利益;
  • 风险偏好,即驾驶主体对驾驶策略所带来的潜在风险的态度。

根据整体利益(环境交通效率等)和个体利益(单车通行速度)之间不同的侧重,现有典型驾驶策略可以分为「对抗驾驶」和「合作驾驶」两类。

其中,根据风险偏好的不同,对抗驾驶策略进一步分为了偏好安全指标的风险厌恶型「防御性驾驶策略」和偏好速度指标的风险中性「竞争性驾驶策略」。

而合作性驾驶策略又可以分为不依赖主动通信设备的“协商性驾驶策略”和依赖主动通信设备(车联网、V2V等)的「协同性驾驶策略」(图1)。

全面分析四大自动驾驶策略

图1:四类典型宏观驾驶策略

在这项工作中,研究团队针对以上四种典型驾驶策略的运作机理,核心任务,交互逻辑,决策机制和硬件基础进行了综述分析。

具体来说,防御性驾驶策略被定义为:对其它车辆采取非理性假设(即认为非理性行为发生概率高),规定自动驾驶汽车以保证自身安全为核心目的而独立决策的一种驾驶策略。

竞争性驾驶策略被定义为:对其它车辆采取理性假设(即认为非理性行为发生概率低),规定自动驾驶汽车以提高自身效率为核心目的而独立决策的一种驾驶策略。

协商性驾驶策略被定义为:基于对传统驾驶行为的理解,自动驾驶汽车与其他车辆进行合理协商、共同决策,以换取效率和安全兼顾的一种驾驶策略。

协同性驾驶策略被定义为:在车联网技术的支持下,自动驾驶汽车与其他车辆协同、接受统一调度指令以达到全局最优的一种驾驶策略。

紧接着,团队进一步对这四种策略的利弊与特点进行了讨论。

随着本世纪自动驾驶技术的发展,防御驾驶策略最早被提出,因为这种驾驶策略与人类驾驶规则之间存在着诸多相似之处,核心目标都是消解或者减少交通不确定性所带来的潜在风险。

然而,防御性驾驶的最大弊病在于:自动驾驶汽车为了防止小概率交通事故的发生可能会过度冗余保守,使得交通效率下降。

比如,在Intel Mobileye团队提出的责任敏感性驾驶模型(Responsibility Sensitive Safety,RSS)原始版本[2]中,自动驾驶汽车被要求保持足够远的安全距离以应对前车随时可能的急刹行为(图2)。

而团队进一步研究发现,当将前车的意图纳入决策考量后,自动驾驶汽车可以在保证安全要求的前提下将跟随距离缩短三倍以上。这表明在引入交互后,改良后的防御驾驶同样可以保证一定的交通效率。

相关研究成果也已经得到公开发表并被Mobileye采纳[3]。

全面分析四大自动驾驶策略

图2:Mobileye 发布的RSS原始版本中对安全距离的规定[2]

随着研究的深入,防御驾驶策略的各种弊端逐渐显现,如缺乏长期规划、影响交通效率等。

为了解决这些问题,「学习」的概念逐渐被引入自动驾驶领域,人们试图教会机器像人类一样,基于经验在预期收益和潜在风险之间做出决策。

基于这一想法,以MIT强化学习模型Deep Traffic(图3)为代表的竞争驾驶策略应运而生[4]。

在这种策略的引导下,自动驾驶汽车将道路交通视为「非合作动态博弈」过程,并始终在寻找提高驾驶效益的可能性。

然而,这类驾驶策略往往难以绕开两个问题:

1. 仿真所带来的拟真性问题,即「reality gap」。这类驾驶决策算法往往需要在仿真系统中进行,而算法的训练过程恰恰十分依赖于环境反馈,那么如何保证仿真系统中的互动过程足够逼真,是研究者必须回答的问题;

2. 理性假设所带来的潜在风险增加。经研究发现,随着训练的进行,由于仿真环境中的理性个体远多于非理性个体,自动驾驶汽车可能会从一次次冒险行为中「尝到甜头」,而越来越趋向于采取激进的驾驶行为 [5]。这种理性假设在实际道路上可能会引发交通阻塞后果。

全面分析四大自动驾驶策略

图3:MIT的Deep Traffic驾驶决策模型 [4](图片来源:https://selfdrivingcars.mit.edu/deeptraffic)

因此,协商驾驶的概念被提出,其主张将路权协商机制引入以调和个体意图之间的矛盾。研究团队将自动驾驶汽车与其他车辆协商路权时需要遵循的原则总结为三点(图4)[6]:

  • 要保守处理感知的局限性;
  • 要将车与车之间的交互(包括隐性通信与主动通信)纳入决策考量;
  • 要平衡交通安全与交通效率,即考虑策略的敏捷性。

基于此,研究团队又相继发表多篇论文论述了如何在各类典型交通场景下基于路权协商进行有效驾驶决策[7]。

全面分析四大自动驾驶策略

图4:安全驾驶所强调的三个核心原则[6]

然而,协商驾驶受限于通信信息量,仍未达到对道路运力的最大利用。随着近年来主动通信技术的成熟和分布式协同决策模型的发展,基于车联网的全局协同驾驶成为可能。

协同驾驶的基本假设是,所有道路车辆都将自身状态信息汇报给中央控制系统,并完全遵守系统统一分配的机动方案进行运动控制。

在此假设下,自动驾驶汽车不再需要进行复杂的轨迹预测和风险评估,可以通过优化或搜索的方法,以最小的计算成本换取道路资源的最大限度利用(图5)[8,9]。

全面分析四大自动驾驶策略

图5:不同策略下20辆车通过同一路口时延对比[9]

Enumeration—基于枚举的协同驾驶全局最优解(时延315.06s);

MCTS—基于搜索的协同驾驶近似最优解(时延316.18s);

FIFO—基于规则的协商驾驶一般解(时延382.54s)

上述协同驾驶的实现有三个前提条件:在车端,必须完成自动驾驶替代并配备主动通信设备;在路端,必须布设密集的智能基础设施作为感知与通信节点;在云端,必须架设低时延、高并发的通信网络与控制中心。

而这也意味着协同驾驶注定无法在短期内落地,我们必须认真考虑在未来较长的一段时间内,如何面对自动驾驶汽车与人类驾驶汽车混行的现实。

一个让人担心的问题是,不同的自动驾驶汽车制造商有着自己的驾驶策略。这有可能会导致一些自动驾驶汽车根据自身的策略,误判其它车辆的策略,从而导致事故的发生。因此,研究者呼吁在驾驶策略层面达成共识,更好的实现和谐驾驶,提高驾驶安全。

随着机器智能水平的逐渐逼近人类,机器如何在更广泛的范围内与人类和谐相处将会成为本世纪最重要的科学问题之一。

而在我国发布的《新一代人工智能发展规划》中,提出了面向2030年我国新一代人工智能发展的指导思想、战略目标和重点任务。其中,人机协同的人工智能是一大重点研究方向。

自动驾驶作为人工智能发展中的代表性领域,在Level 2-Level 5级的人机共驾,Level-4-Level 5级的多种车辆协同中,都涉及人机协同的人工智能研究问题,这些问题的解决涉及到行为建模、人机交互、心理学等多个学科交叉,有必要得到更多的关注和重视。

以上是全面分析四大自动驾驶策略的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? 为何在自动驾驶方面Gaussian Splatting如此受欢迎,开始放弃NeRF? Jan 17, 2024 pm 02:57 PM

写在前面&笔者的个人理解三维Gaussiansplatting(3DGS)是近年来在显式辐射场和计算机图形学领域出现的一种变革性技术。这种创新方法的特点是使用了数百万个3D高斯,这与神经辐射场(NeRF)方法有很大的不同,后者主要使用隐式的基于坐标的模型将空间坐标映射到像素值。3DGS凭借其明确的场景表示和可微分的渲染算法,不仅保证了实时渲染能力,而且引入了前所未有的控制和场景编辑水平。这将3DGS定位为下一代3D重建和表示的潜在游戏规则改变者。为此我们首次系统地概述了3DGS领域的最新发展和关

自动驾驶场景中的长尾问题怎么解决? 自动驾驶场景中的长尾问题怎么解决? Jun 02, 2024 pm 02:44 PM

昨天面试被问到了是否做过长尾相关的问题,所以就想着简单总结一下。自动驾驶长尾问题是指自动驾驶汽车中的边缘情况,即发生概率较低的可能场景。感知的长尾问题是当前限制单车智能自动驾驶车辆运行设计域的主要原因之一。自动驾驶的底层架构和大部分技术问题已经被解决,剩下的5%的长尾问题,逐渐成了制约自动驾驶发展的关键。这些问题包括各种零碎的场景、极端的情况和无法预测的人类行为。自动驾驶中的边缘场景"长尾"是指自动驾驶汽车(AV)中的边缘情况,边缘情况是发生概率较低的可能场景。这些罕见的事件

选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 选择相机还是激光雷达?实现鲁棒的三维目标检测的最新综述 Jan 26, 2024 am 11:18 AM

0.写在前面&&个人理解自动驾驶系统依赖于先进的感知、决策和控制技术,通过使用各种传感器(如相机、激光雷达、雷达等)来感知周围环境,并利用算法和模型进行实时分析和决策。这使得车辆能够识别道路标志、检测和跟踪其他车辆、预测行人行为等,从而安全地操作和适应复杂的交通环境.这项技术目前引起了广泛的关注,并认为是未来交通领域的重要发展领域之一。但是,让自动驾驶变得困难的是弄清楚如何让汽车了解周围发生的事情。这需要自动驾驶系统中的三维物体检测算法可以准确地感知和描述周围环境中的物体,包括它们的位置、

你是否真正掌握了坐标系转换?自动驾驶离不开的多传感器问题 你是否真正掌握了坐标系转换?自动驾驶离不开的多传感器问题 Oct 12, 2023 am 11:21 AM

一先导与重点文章主要介绍自动驾驶技术中几种常用的坐标系统,以及他们之间如何完成关联和转换,最终构建出统一的环境模型。这里重点理解自车到相机刚体转换(外参),相机到图像转换(内参),图像到像素有单位转换。3d向2d转换会有相应的畸变,平移等。重点:自车坐标系相机机体坐标系需要被重写的是:平面坐标系像素坐标系难点:要考虑图像畸变,去畸变和加畸变都是在像平面上去补偿二简介视觉系统一共有四个坐标系:像素平面坐标系(u,v)、图像坐标系(x,y)、相机坐标系()和世界坐标系()。每种坐标系之间均存在联系,

自动驾驶与轨迹预测看这一篇就够了! 自动驾驶与轨迹预测看这一篇就够了! Feb 28, 2024 pm 07:20 PM

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!入门相关知识1.预习的论文有没有切入顺序?A:先看survey,p

聊聊端到端与下一代自动驾驶系统,以及端到端自动驾驶的一些误区? 聊聊端到端与下一代自动驾驶系统,以及端到端自动驾驶的一些误区? Apr 15, 2024 pm 04:13 PM

最近一个月由于众所周知的一些原因,非常密集地和行业内的各种老师同学进行了交流。交流中必不可免的一个话题自然是端到端与火爆的特斯拉FSDV12。想借此机会,整理一下在当下这个时刻的一些想法和观点,供大家参考和讨论。如何定义端到端的自动驾驶系统,应该期望端到端解决什么问题?按照最传统的定义,端到端的系统指的是一套系统,输入传感器的原始信息,直接输出任务关心的变量。例如,在图像识别中,CNN相对于传统的特征提取器+分类器的方法就可以称之为端到端。在自动驾驶任务中,输入各种传感器的数据(相机/LiDAR

SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 SIMPL:用于自动驾驶的简单高效的多智能体运动预测基准 Feb 20, 2024 am 11:48 AM

原标题:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving论文链接:https://arxiv.org/pdf/2402.02519.pdf代码链接:https://github.com/HKUST-Aerial-Robotics/SIMPL作者单位:香港科技大学大疆论文思路:本文提出了一种用于自动驾驶车辆的简单高效的运动预测基线(SIMPL)。与传统的以代理为中心(agent-cent

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles