目录
1、捕捉AI暴露程度
2、通过人工智能风险教育活动提高员工意识
3、通过隐私计划消除人工智能数据暴露
4、将风险管理纳入模型运营
5、采用人工智能安全措施应对对抗性攻击
首页 科技周边 人工智能 如何管理人工智能风险和安全?

如何管理人工智能风险和安全?

Apr 19, 2023 pm 02:04 PM
人工智能 安全 数据暴露

​大型、敏感的数据集经常被用于训练AI模型,从而产生隐私和数据泄露风险。人工智能的使用增加了组织的威胁向量,并扩大了其攻击面。人工智能进一步为良性错误创造了新的机会,对模式和业务结果产生不利影响。

如何管理人工智能风险和安全?

不了解的风险无法减轻。Gartner最近对首席信息安全官的一项调查显示,大多数组织没有考虑到人工智能带来的新的安全和业务风险,或者他们必须采取新的控制措施来降低这些风险。人工智能需要新型风险和安全管理措施以及缓解框架。

以下是安全和风险领导者应该关注的五大优先事项,以有效管理其组织内的人工智能风险和安全:

1、捕捉AI暴露程度

机器学习模型对大多数用户来说是不透明的,并且与一般的软件系统不同,它们的内部工作原理甚至连最熟练的专家都不知道。数据科学家和模型开发人员通常理解他们的机器学习模型试图做什么,但他们不能总是破译模型处理数据的内部结构或算法手段。

这种理解能力的缺乏严重限制了组织管理AI风险的能力。人工智能风险管理的第一步是列出组织中使用的所有人工智能模型,无论它们是第三方软件的组件、内部开发或通过软件即服务应用程序访问。这应该包括识别各种模型之间的相互依赖关系。然后根据运营影响对模型进行排序,并考虑到风险管理控制可以根据确定的优先级逐步应用。

一旦模型被列出,下一步就是使它们尽可能的可解释或可解释性。“可解释性”意味着产生细节、原因或解释的能力,为特定的受众阐明模型的功能。这将为风险和安全管理者提供管理和减轻由模型结果带来的业务、社会、责任和安全风险的环境。

2、通过人工智能风险教育活动提高员工意识

员工意识是人工智能风险管理的一个重要组成部分。首先,让所有参与者,包括CISO、首席隐私官、首席数据官以及法律和合规官,重新调整他们对AI的心态。他们应该明白,人工智能“不像任何其他应用程序”——它会带来独特的风险,需要特定的控制来减轻此类风险。然后,与业务利益相关者联系,以扩大对需要管理的AI风险的认识。

与这些利益相关者一起,确定跨团队和随着时间的推移构建AI知识的最佳方式。例如,看看是否可以在企业的学习管理系统中添加一门关于基本AI概念的课程。与应用程序和数据安全部门合作,帮助在所有组织成员中培养AI知识。

3、通过隐私计划消除人工智能数据暴露

根据Gartner最近的一项调查,隐私和安全一直被视为人工智能实现的主要障碍。采用数据保护和隐私程序可以有效地消除AI内部和共享数据的暴露。

有一系列方法可以用于访问和共享基本数据,同时仍然满足隐私和数据保护要求。确定哪种数据隐私技术或技术组合,对组织的特定用例最有意义。例如,调查诸如数据屏蔽、合成数据生成或差分隐私等技术。

在向外部组织导出或导入数据时,应满足数据隐私要求。在这些场景中,像完全同态加密和安全多方计算等技术,应该比保护数据不受内部用户和数据科学家的影响更有用。

4、将风险管理纳入模型运营

AI模型需要特殊用途的流程作为模型操作或ModelOps的一部分,以使人工智能可靠且高效。随着环境因素的不断变化,AI模型必须持续监测业务价值泄漏和不可预测的(有时是不利的)结果。

有效的监控需要对AI模型的理解。专门的风险管理流程必须成为ModelOps的一个组成部分,以使AI更值得信任、准确、公平,并对对抗性攻击或良性错误更有弹性。

控制措施应该持续应用——例如,贯穿模型开发、测试和部署以及持续运营的整个过程。有效的控制将检测到恶意行为、良性错误和AI数据或模型的意外变化,这些变化会导致不公平、损坏、不准确、模型性能和预测不佳,以及其他意想不到的后果。

5、采用人工智能安全措施应对对抗性攻击

检测和阻止对人工智能的攻击需要新的技术。对AI的恶意攻击可能导致重大的组织损害和损失,包括财务、声誉或与知识产权、敏感客户数据或专有数据相关的数据。与安全部门合作的应用程序负责人必须在他们的AI应用程序中添加控制,以检测异常数据输入、恶意攻击和良性输入错误。

围绕AI模型和数据实施一整套传统的企业安全控制,以及针对AI的全新完整性措施,如容忍对抗性AI的训练模型。最后,使用欺诈、异常检测和机器人检测技术,防止AI数据中毒或输入错误检测。​

以上是如何管理人工智能风险和安全?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles