目录
声明和初始化
扩容时机
源码分析
go1.18
内存对齐
总结
首页 后端开发 Golang 浅析Go语言的切片是如何扩容

浅析Go语言的切片是如何扩容

Apr 19, 2023 pm 07:21 PM
go 面试 源码

Go 语言切片是如何扩容的?下面本篇文章给大家介绍一下Go 语言中切片的扩容机制,希望对大家有所帮助!

浅析Go语言的切片是如何扩容

在 Go 语言中,有一个很常用的数据结构,那就是切片(Slice)。

切片是一个拥有相同类型元素的可变长度的序列,它是基于数组类型做的一层封装。它非常灵活,支持自动扩容。

切片是一种引用类型,它有三个属性:指针长度容量

slict1.png

底层源码定义如下:

type slice struct {
    array unsafe.Pointer
    len   int
    cap   int
}
登录后复制
  1. 指针: 指向 slice 可以访问到的第一个元素。
  2. 长度: slice 中元素个数。
  3. 容量: slice 起始元素到底层数组最后一个元素间的元素个数。

比如使用 make([]byte, 5) 创建一个切片,它看起来是这样的:

slice2.png

声明和初始化

切片的使用还是比较简单的,这里举一个例子,直接看代码吧。

func main() {
    var nums []int  // 声明切片
    fmt.Println(len(nums), cap(nums)) // 0 0
    nums = append(nums, 1)   // 初始化
    fmt.Println(len(nums), cap(nums)) // 1 1

    nums1 := []int{1,2,3,4}    // 声明并初始化
    fmt.Println(len(nums1), cap(nums1))    // 4 4

    nums2 := make([]int,3,5)   // 使用make()函数构造切片
    fmt.Println(len(nums2), cap(nums2))    // 3 5
}
登录后复制

扩容时机

当切片的长度超过其容量时,切片会自动扩容。这通常发生在使用 append 函数向切片中添加元素时。

扩容时,Go 运行时会分配一个新的底层数组,并将原始切片中的元素复制到新数组中。然后,原始切片将指向新数组,并更新其长度和容量。

需要注意的是,由于扩容会分配新数组并复制元素,因此可能会影响性能。如果你知道要添加多少元素,可以使用 make 函数预先分配足够大的切片来避免频繁扩容。

接下来看看 append 函数,签名如下:

func Append(slice []int, items ...int) []int
登录后复制

append 函数参数长度可变,可以追加多个值,还可以直接追加一个切片。使用起来比较简单,分别看两个例子:

追加多个值:

package main

import "fmt"

func main() {
    s := []int{1, 2, 3}
    fmt.Println("初始切片:", s)

    s = append(s, 4, 5, 6)
    fmt.Println("追加多个值后的切片:", s)
}
登录后复制

输出结果为:

初始切片: [1 2 3]
追加多个值后的切片: [1 2 3 4 5 6]
登录后复制

再来看一下直接追加一个切片:

package main

import "fmt"

func main() {
    s1 := []int{1, 2, 3}
    fmt.Println("初始切片:", s1)

    s2 := []int{4, 5, 6}
    s1 = append(s1, s2...)
    fmt.Println("追加另一个切片后的切片:", s1)
}
登录后复制

输出结果为:

初始切片: [1 2 3]
追加另一个切片后的切片: [1 2 3 4 5 6]
登录后复制

再来看一个发生扩容的例子:

package main

import "fmt"

func main() {
    s := make([]int, 0, 3) // 创建一个长度为0,容量为3的切片
    fmt.Printf("初始状态: len=%d cap=%d %v\n", len(s), cap(s), s)

    for i := 1; i <= 5; i++ {
        s = append(s, i) // 向切片中添加元素
        fmt.Printf("添加元素%d: len=%d cap=%d %v\n", i, len(s), cap(s), s)
    }
}
登录后复制

输出结果为:

初始状态: len=0 cap=3 []
添加元素1: len=1 cap=3 [1]
添加元素2: len=2 cap=3 [1 2]
添加元素3: len=3 cap=3 [1 2 3]
添加元素4: len=4 cap=6 [1 2 3 4]
添加元素5: len=5 cap=6 [1 2 3 4 5]
登录后复制

在这个例子中,我们创建了一个长度为 0,容量为 3 的切片。然后,我们使用 append 函数向切片中添加 5 个元素。

当我们添加第 4 个元素时,切片的长度超过了其容量。此时,切片会自动扩容。新的容量是原始容量的两倍,即 6

表面现象已经看到了,接下来,我们就深入到源码层面,看看切片的扩容机制到底是什么样的。

源码分析

在 Go 语言的源码中,切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。

growslice 函数定义在 Go 语言的 runtime 包中,它的调用是在编译后的代码中实现的。具体来说,当执行 append 操作时,编译器会将其转换为类似下面的代码:

slice = append(slice, elem)
登录后复制

在上述代码中,如果切片容量不足以容纳新的元素,则会调用 growslice 函数进行扩容。所以 growslice 函数的调用是由编译器在生成的机器码中实现的,而不是在源代码中显式调用的

切片扩容策略有两个阶段,go1.18 之前和之后是不同的,这一点在 go1.18 的 release notes 中有说明。

下面我用 go1.17 和 go1.18 两个版本来分开说明。先通过一段测试代码,直观感受一下两个版本在扩容上的区别。

package main

import "fmt"

func main() {
    s := make([]int, 0)

    oldCap := cap(s)

    for i := 0; i < 2048; i++ {
        s = append(s, i)

        newCap := cap(s)

        if newCap != oldCap {
            fmt.Printf("[%d -> %4d] cap = %-4d  |  after append %-4d  cap = %-4d\n", 0, i-1, oldCap, i, newCap)
            oldCap = newCap
        }
    }
}
登录后复制

上述代码先创建了一个空的 slice,然后在一个循环里不断往里面 append 新元素。

然后记录容量的变化,每当容量发生变化的时候,记录下老的容量,添加的元素,以及添加完元素之后的容量。

这样就可以观察,新老 slice 的容量变化情况,从而找出规律。

运行结果(1.17 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1   
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 1024
[0 -> 1023] cap = 1024  |  after append 1024  cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1696
[0 -> 1695] cap = 1696  |  after append 1696  cap = 2304
登录后复制

运行结果(1.18 版本):

[0 ->   -1] cap = 0     |  after append 0     cap = 1
[0 ->    0] cap = 1     |  after append 1     cap = 2   
[0 ->    1] cap = 2     |  after append 2     cap = 4   
[0 ->    3] cap = 4     |  after append 4     cap = 8   
[0 ->    7] cap = 8     |  after append 8     cap = 16  
[0 ->   15] cap = 16    |  after append 16    cap = 32  
[0 ->   31] cap = 32    |  after append 32    cap = 64  
[0 ->   63] cap = 64    |  after append 64    cap = 128 
[0 ->  127] cap = 128   |  after append 128   cap = 256 
[0 ->  255] cap = 256   |  after append 256   cap = 512 
[0 ->  511] cap = 512   |  after append 512   cap = 848 
[0 ->  847] cap = 848   |  after append 848   cap = 1280
[0 -> 1279] cap = 1280  |  after append 1280  cap = 1792
[0 -> 1791] cap = 1792  |  after append 1792  cap = 2560
登录后复制

根据上面的结果还是能看到区别的,具体扩容策略下面边看源码边说明。

go1.17

扩容调用的是 growslice 函数,我复制了其中计算新容量部分的代码。

// src/runtime/slice.go

func growslice(et *_type, old slice, cap int) slice {
    // ...

    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        if old.cap < 1024 {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                newcap += newcap / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }

    // ...

    return slice{p, old.len, newcap}
}
登录后复制

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于 1024 就会将容量翻倍;
  3. 如果当前切片的长度大于等于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

go1.18

// src/runtime/slice.go

func growslice(et *_type, old slice, cap int) slice {
    // ...

    newcap := old.cap
    doublecap := newcap + newcap
    if cap > doublecap {
        newcap = cap
    } else {
        const threshold = 256
        if old.cap < threshold {
            newcap = doublecap
        } else {
            // Check 0 < newcap to detect overflow
            // and prevent an infinite loop.
            for 0 < newcap && newcap < cap {
                // Transition from growing 2x for small slices
                // to growing 1.25x for large slices. This formula
                // gives a smooth-ish transition between the two.
                newcap += (newcap + 3*threshold) / 4
            }
            // Set newcap to the requested cap when
            // the newcap calculation overflowed.
            if newcap <= 0 {
                newcap = cap
            }
        }
    }

    // ...

    return slice{p, old.len, newcap}
}
登录后复制

和之前版本的区别,主要在扩容阈值,以及这行代码:newcap += (newcap + 3*threshold) / 4

在分配内存空间之前需要先确定新的切片容量,运行时根据切片的当前容量选择不同的策略进行扩容:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  3. 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

内存对齐

分析完两个版本的扩容策略之后,再看前面的那段测试代码,就会发现扩容之后的容量并不是严格按照这个策略的。

那是为什么呢?

实际上,growslice 的后半部分还有更进一步的优化(内存对齐等),靠的是 roundupsize 函数,在计算完 newcap 值之后,还会有一个步骤计算最终的容量:

capmem = roundupsize(uintptr(newcap) * ptrSize)
newcap = int(capmem / ptrSize)
登录后复制

这个函数的实现就不在这里深入了,先挖一个坑,以后再来补上。

总结

切片扩容通常是在进行切片的 append 操作时触发的。在进行 append 操作时,如果切片容量不足以容纳新的元素,就需要对切片进行扩容,此时就会调用 growslice 函数进行扩容。

切片扩容分两个阶段,分为 go1.18 之前和之后:

一、go1.18 之前:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于 1024 就会将容量翻倍;
  3. 如果当前切片的长度大于 1024 就会每次增加 25% 的容量,直到新容量大于期望容量;

二、go1.18 之后:

  1. 如果期望容量大于当前容量的两倍就会使用期望容量;
  2. 如果当前切片的长度小于阈值(默认 256)就会将容量翻倍;
  3. 如果当前切片的长度大于等于阈值(默认 256),就会每次增加 25% 的容量,基准是 newcap + 3*threshold,直到新容量大于期望容量;

以上就是本文的全部内容,如果觉得还不错的话欢迎点赞转发关注,感谢支持。

推荐学习:Golang教程

以上是浅析Go语言的切片是如何扩容的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Go WebSocket 消息如何发送? Go WebSocket 消息如何发送? Jun 03, 2024 pm 04:53 PM

在Go中,可以使用gorilla/websocket包发送WebSocket消息。具体步骤:建立WebSocket连接。发送文本消息:调用WriteMessage(websocket.TextMessage,[]byte("消息"))。发送二进制消息:调用WriteMessage(websocket.BinaryMessage,[]byte{1,2,3})。

如何在 Go 中使用正则表达式匹配时间戳? 如何在 Go 中使用正则表达式匹配时间戳? Jun 02, 2024 am 09:00 AM

在Go中,可以使用正则表达式匹配时间戳:编译正则表达式字符串,例如用于匹配ISO8601时间戳的表达式:^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-][0-9]{2}:[0-9]{2})$。使用regexp.MatchString函数检查字符串是否与正则表达式匹配。

Golang 技术性能优化中如何避免内存泄漏? Golang 技术性能优化中如何避免内存泄漏? Jun 04, 2024 pm 12:27 PM

内存泄漏会导致Go程序内存不断增加,可通过:关闭不再使用的资源,如文件、网络连接和数据库连接。使用弱引用防止内存泄漏,当对象不再被强引用时将其作为垃圾回收目标。利用go协程,协程栈内存会在退出时自动释放,避免内存泄漏。

Golang 与 Go 语言的区别 Golang 与 Go 语言的区别 May 31, 2024 pm 08:10 PM

Go和Go语言是不同的实体,具有不同的特性。Go(又称Golang)以其并发性、编译速度快、内存管理和跨平台优点而闻名。Go语言的缺点包括生态系统不如其他语言丰富、语法更严格以及缺乏动态类型。

golang框架面试题集锦 golang框架面试题集锦 Jun 02, 2024 pm 09:37 PM

Go框架是一组扩展Go内置库的组件,提供预制功能(例如Web开发和数据库操作)。流行的Go框架包括Gin(Web开发)、GORM(数据库操作)和RESTful(API管理)。中间件是HTTP请求处理链中的拦截器模式,用于在不修改处理程序的情况下添加身份验证或请求日志记录等功能。Session管理通过存储用户数据来保持会话状态,可以使用gorilla/sessions管理session。

Go 并发函数的单元测试指南 Go 并发函数的单元测试指南 May 03, 2024 am 10:54 AM

对并发函数进行单元测试至关重要,因为这有助于确保其在并发环境中的正确行为。测试并发函数时必须考虑互斥、同步和隔离等基本原理。可以通过模拟、测试竞争条件和验证结果等方法对并发函数进行单元测试。

如何使用 Golang 的错误包装器? 如何使用 Golang 的错误包装器? Jun 03, 2024 pm 04:08 PM

在Golang中,错误包装器允许你在原始错误上追加上下文信息,从而创建新错误。这可用于统一不同库或组件抛出的错误类型,简化调试和错误处理。步骤如下:使用errors.Wrap函数将原有错误包装成新错误。新错误包含原始错误的上下文信息。使用fmt.Printf输出包装后的错误,提供更多上下文和可操作性。在处理不同类型的错误时,使用errors.Wrap函数统一错误类型。

Go kit框架助力Golang API性能提升 Go kit框架助力Golang API性能提升 May 07, 2024 pm 03:24 PM

Gokit是一个Golang微服务框架,通过优化、可扩展、可维护和测试友好功能,提升API性能。它提供一系列工具和模式,使用户能够快速构建高性能和可维护的API。实际生产中,它被广泛应用于Netflix、Spotify和Uber等大型平台的API构建,处理着海量的请求。

See all articles