神经网络的可解释性存在问题:重温三十年前对 NN 的批判
1 可解释AI (XAI)
随着深度神经网络 (DNN) 用于决定贷款批准、工作申请、批准法院保释等与人们利益息息相关或者一些生死攸关的决定(例如在高速公路上突然停车),去解释这些决定,而不仅仅是产生一个预测分数,是至关重要的。
可解释人工智能 (XAI) 的研究最近集中在反事实(counterfactual)例子的概念上。这个想法很简单:首先制造一些有预期输出的反事实样例并输入到原来的网络中;然后,读取隐层单元解释为什么网络会产生一些其他输出。更正式地说:
“返回分数 p 是因为变量 V 具有与其关联的值 (v1, v2, ...)。如果 V 具有值 (v′1 , v′2 , ...),并且所有其他变量保持不变, 分数 p' 会被返回。”
下面则是更加具体的一个例子:
“你被拒绝贷款是因为你的年收入是 30,000 英镑。如果你的收入是 45,000 英镑,你就会获得贷款。”
然而,一篇由Browne 和 Swift提出的论文[1] (以下简称 B&W)最近表明,反事实示例只是稍微更有意义的对抗性示例,这些示例是通过对输入执行小的且不可观察的扰动而产生的,从而导致网络对它们进行错误分类具有很高的自信度。
此外,反事实的例子「解释」了一些特征应该是什么才能得到正确的预测,但「没有打开黑匣子」;也就是说,没有解释算法是如何工作的。文章继续争辩说,反事实的例子并没有为可解释性提供解决方案,并且「没有语义就没有解释」。
事实上,文章甚至提出了更强有力的建议:
1)我们要么找到一种方法来提取假定存在于网络隐藏层中的语义,要么
2)承认我们失败。
而Walid S. Saba本人则对(1)持悲观态度,换句话说他遗憾地承认我们的失败,以下是他的理由。
2 Fodor 和 Pylyshyn 的「鬼魂」
虽然大众完全同意B&W的观点,即“没有语义就没有解释”,但解释深度神经网络中隐藏层表示的语义为深度学习系统产生令人满意的解释的希望之所以不能够实现,作者认为,原因正是出自三十多年前Fodor 和 Pylyshyn [2]中概述的原因。
Walid S. Saba接着论证到:在解释问题出在哪里之前,我们需要注意到,纯粹的外延模型(例如神经网络)不能对系统性(systematicity)和组合性(compositionality)进行建模,因为它们不承认具有可再衍生的句法和相应语义的符号结构。
因此,神经网络中的表示并不是真正与任何可解释的事物相对应的“符号”——而是分布的、相关的和连续的数值,它们本身并不意味着任何可以在概念上解释的东西。
用更简单的术语来说,神经网络中的子符号表示本身并不指代人类在概念上可以理解的任何事物(隐藏单元本身不能代表任何形而上学意义的对象)。相反,它是一组隐藏单元,它们通常共同代表一些显着特征(例如,猫的胡须)。
但这正是神经网络无法实现可解释性的原因,即因为几个隐藏特征的组合是不可确定的——一旦组合完成(通过一些线性组合函数),单个单元就会丢失(我们将在下面展示)。
3 可解释性是“反向推理”,DNN无法逆向推理
作者讨论过为什么 Fodor 和 Pylyshyn 得出的结论是 NN 不能对系统性(因此是可解释的)推论进行建模[2]。
在符号系统中,有定义明确的组合语义函数,它们根据成分的意义计算复合词的意义。但是这种组合是可逆的——
也就是说,人们总是可以得到产生该输出的(输入)组件,并且正是因为在符号系统中,人们可以访问一种“句法结构”,这一结构含有如何组装组件的地图。而这在 NN 中都并非如此。一旦向量(张量)在 NN 中组合,它们的分解就无法确定(向量(包括标量)可以分解的方式是无限的!)
为了说明为什么这是问题的核心,让我们考虑一下 B&W 提出的在 DNN 中提取语义以实现可解释性的建议。B&W 的建议是遵循以下原则:
输入图像被标记为“建筑”,因为通常激活轮毂盖的隐藏神经元 41435 的激活值为 0.32。如果隐藏神经元 41435 的激活值为 0.87,则输入图像将被标记为“汽车”。
要了解为什么这不会导致可解释性,只需注意要求神经元 41435 的激活为 0.87 是不够的。为简单起见,假设神经元 41435 只有两个输入,x1 和 x2。我们现在所拥有的如下图 1 所示:
图注:拥有两个输入的单一神经元的输出为0.87
现在假设我们的激活函数 f 是流行的 ReLU 函数,那么可以产生 z = 0.87 的输出。这意味着对于下表中显示的 x1、x2、w1 和 w2 的值,可以得到 0.87 的输出。
表注:多种输入方式都可以产生0.87的数值
查看上表,很容易看出 x1、x2、w1 和 w2 的线性组合有无数个,它们会产生输出 0.87。这里的重点是 NN 中的组合性是不可逆的,因此无法从任何神经元或任何神经元集合中捕获有意义的语义。
为了与 B&W 的口号“没有语义就没有解释”保持一致,我们声明永远无法从 NN 获得任何解释。简而言之,没有组合性就没有语义,没有语义就没有解释,DNN 无法对组合性进行建模。这可以形式化如下:
1. 没有语义就没有解释[1] 2. 没有可逆的组合性就没有语义[2]
3. DNN 中的组合性是不可逆的[2]
=> DNN 无法解释(没有 XAI)
结束。
顺便说一句,DNN 中的组合性是不可逆的这一事实除了无法产生可解释的预测之外还有其他后果,尤其是在需要更高层次推理的领域,如自然语言理解 (NLU)。
特别是,这样的系统确实无法解释一个孩子如何仅从 (
因为这样的系统没有“记忆”,而且它们的组成不能颠倒,理论上它们需要无数个例子来学习这个简单的结构。【编者注:这一点正好是乔姆斯基对于结构主义语言学的质疑,并由此开启了影响语言学半个多世纪的转化生成语法。】
最后,作者强调,三十多年前Fodor 和 Pylyshyn [2]提出了对 NN 作为认知架构的批评——他们展示了为什么 NN 不能对系统性、生产力和组合性进行建模,所有这些都是谈论任何“语义”所必须的——而这一令人信服的批评从未得到完美的回答。
随着解决人工智能可解释性问题的需求变得至关重要,我们必须重新审视那篇经典论文,因为它显示了将统计模式识别等同于人工智能进步的局限性。
以上是神经网络的可解释性存在问题:重温三十年前对 NN 的批判的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
