使用多个ChatGPT API实现清华UltraChat多轮对话
自 ChatGPT 发布以来,这段时间对话模型的热度只增不减。当我们赞叹这些模型表现惊艳的同时,也应该猜到其背后巨大的算力和海量数据的支持。
单就数据而言,高质量的数据至关重要,为此 OpenAI 对数据和标注工作下了很大力气。有多项研究表明,ChatGPT 是比人类更加可靠的数据标注者,如果开源社区可以获得 ChatGPT 等强大语言模型的大量对话数据,就可以训练出性能更好的对话模型。这一点羊驼系列模型 ——Alpaca、Vicuna、Koala—— 已经证明过。例如,Vicuna 使用从 ShareGPT 收集的用户共享数据对 LLaMA 模型进行指令微调,就复刻了 ChatGPT 九成功力。越来越多的证据表明,数据是训练强大语言模型的第一生产力。
ShareGPT 是一个 ChatGPT 数据共享网站,用户会上传自己觉得有趣的 ChatGPT 回答。ShareGPT 上的数据是开放但琐碎的,需要研究人员自己收集整理。如果能够有一个高质量的,覆盖范围广泛的数据集,开源社区在对话模型研发方面将会事半功倍。
基于此,最近一个名为 UltraChat 的项目就系统构建了一个超高质量的对话数据集。项目作者尝试用两个独立的 ChatGPT Turbo API 进行对话,从而生成多轮对话数据。
- 项目地址:https://github.com/thunlp/UltraChat
- 数据集地址:http://39.101.77.220/
- 数据集交互地址:https://atlas.nomic.ai/map/0ce65783-c3a9-40b5-895d-384933f50081/a7b46301-022f-45d8-bbf4-98107eabdbac
具体而言,该项目旨在构建一个开源、大规模、多轮的基于 Turbo APIs 的对话数据,方便研究者开发具有通用对话能力的强大语言模型。此外,考虑到隐私保护等因素,该项目不会直接使用互联网上的数据作为提示。为了确保生成数据质量,研究者在生成过程中采用了两个独立的 ChatGPT Turbo API,其中一个模型扮演用户角色来生成问题或指令,另一个模型生成反馈。
如果直接使用 ChatGPT 基于一些种子对话和问题让其自由生成,容易出现话题单一、内容重复等问题,从而难以保证数据本身的多样性。为此,UltraChat 对对话数据覆盖的主题和任务类型进行了系统的分类和设计,还对用户模型和回复模型进行了细致的提示工程,它包含三个部分:
- 关于世界的问题(Questions about the World):这部分对话来自于对现实世界中的概念、实体和对象相关的广泛询问。所涉及的主题涵盖科技、艺术、金融等多个领域。
- 写作与创作(Writing and Creation):这部分对话数据着重于指示 AI 从头进行创作一个完整的文本材料,并在此基础上进行后续的提问或进一步指导以完善写作,撰写的材料内容类型包括文章、博客、诗歌、故事、戏剧,电子邮件等等。
- 对于现有资料的辅助改写(Writing and Creation):该对话数据是基于现有资料生成的,指令包括但不限于改写、续写、翻译、归纳、推理等,涵盖主题同样非常多样。
这三部分数据覆盖了大部分用户对于 AI 模型的要求。同时,这三类数据也会面临着不同的挑战,为此需要不同的构造方法。
例如,第一部分的数据主要挑战在于如何在总量为几十万组对话中尽量广泛地涵盖人类社会中的常见知识,为此研究者从自动生成的主题和来源于 Wikidata 的实体两个方面进行了筛选和构造。
第二、三部分的挑战主要来自于如何模拟用户指令,并在后续对话中让用户模型的生成尽量多样化的同时又不偏离对话的最终目标(按照要求生成材料或改写材料),为此研究者对用户模型的输入提示进行了充分的设计和实验。在构造完成之后,作者还对数据进行了后处理以削弱幻觉问题。
目前,该项目已经发布了前两部分的数据,数据量为 124 万条,应该是目前开源社区内规模最大的相关数据集。内容包含在现实世界中丰富多彩的对话,最后一部分数据将在未来发布。
世界问题数据来源于 30 个具有代表性和多样性的元主题,如下图所示:
- 基于以上元主题,该项目生成了 1100 子主题用于数据构建;
- 对于每个子主题,最多生成 10 个具体问题;
- 然后使用 Turbo API 为 10 个问题中的每一个生成新的相关问题;
- 对于每个问题,如上所述迭代地使用两个模型生成 3~7 轮对话。
此外,该项目从维基数据中收集了最常用的 10000 个命名实体;使用 ChatGPT API 为每个实体生成 5 个元问题;对于每个元问题,生成 10 个更具体的问题和 20 个相关但一般的问题;采样 20w 个特定问题和 25w 个一般问题以及 5w 个元问题,并为每个问题生成了 3~7 轮对话。
接下来我们看一个具体的例子:
我们在 UltraChat 平台上测试了数据搜索效果。例如,输入「音乐(music)」,系统会自动搜索出 10000 组与音乐相关的 ChatGPT 对话数据,并且每组都是多轮对话
输入关键词「数学(math)」的搜索结果,有 3346 组多轮对话:
目前,UltraChat 涵盖的信息领域已经非常多,包括医疗、教育、运动、环保等多个话题。同时,笔者尝试使用开源的 LLaMa-7B 模型在 UltraChat 上进行监督的指令微调,发现仅仅训练 10000 步后就有非常可观的效果,一些例子如下:
世界知识:分别列出 10 个很好的中国和美国大学
想象问题:当时空旅行成为可能后,有什么可能的后果?
三段论:鲸鱼是鱼吗?
假设问题:证明成龙比李小龙更出色
总体来说,UltraChat 是一个高质量、范围广的ChatGPT 对话数据集,可以和其它数据集结合,显着地提升开源对话模型的质量。目前 UltraChat 还只放出了英文版,但也会在未来放出中文版的数据。感兴趣的读者快去探索一下吧。
以上是使用多个ChatGPT API实现清华UltraChat多轮对话的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

使用C 中的chrono库可以让你更加精确地控制时间和时间间隔,让我们来探讨一下这个库的魅力所在吧。C 的chrono库是标准库的一部分,它提供了一种现代化的方式来处理时间和时间间隔。对于那些曾经饱受time.h和ctime折磨的程序员来说,chrono无疑是一个福音。它不仅提高了代码的可读性和可维护性,还提供了更高的精度和灵活性。让我们从基础开始,chrono库主要包括以下几个关键组件:std::chrono::system_clock:表示系统时钟,用于获取当前时间。std::chron

在C 中测量线程性能可以使用标准库中的计时工具、性能分析工具和自定义计时器。1.使用库测量执行时间。2.使用gprof进行性能分析,步骤包括编译时添加-pg选项、运行程序生成gmon.out文件、生成性能报告。3.使用Valgrind的Callgrind模块进行更详细的分析,步骤包括运行程序生成callgrind.out文件、使用kcachegrind查看结果。4.自定义计时器可灵活测量特定代码段的执行时间。这些方法帮助全面了解线程性能,并优化代码。

MeMebox 2.0通过创新架构和性能突破重新定义了加密资产管理。1) 它解决了资产孤岛、收益衰减和安全与便利悖论三大痛点。2) 通过智能资产枢纽、动态风险管理和收益增强引擎,提升了跨链转账速度、平均收益率和安全事件响应速度。3) 为用户提供资产可视化、策略自动化和治理一体化,实现了用户价值重构。4) 通过生态协同和合规化创新,增强了平台的整体效能。5) 未来将推出智能合约保险池、预测市场集成和AI驱动资产配置,继续引领行业发展。

靠谱的数字货币交易平台推荐:1. OKX,2. Binance,3. Coinbase,4. Kraken,5. Huobi,6. KuCoin,7. Bitfinex,8. Gemini,9. Bitstamp,10. Poloniex,这些平台均以其安全性、用户体验和多样化的功能着称,适合不同层次的用户进行数字货币交易

全球十大加密货币交易平台包括Binance、OKX、Gate.io、Coinbase、Kraken、Huobi Global、Bitfinex、Bittrex、KuCoin和Poloniex,均提供多种交易方式和强大的安全措施。

Binance、OKX、gate.io等十大数字货币交易所完善系统、高效多元化交易和严密安全措施严重推崇。

比特币的价格在20,000到30,000美元之间。1. 比特币自2009年以来价格波动剧烈,2017年达到近20,000美元,2021年达到近60,000美元。2. 价格受市场需求、供应量、宏观经济环境等因素影响。3. 通过交易所、移动应用和网站可获取实时价格。4. 比特币价格波动性大,受市场情绪和外部因素驱动。5. 与传统金融市场有一定关系,受全球股市、美元强弱等影响。6. 长期趋势看涨,但需谨慎评估风险。

C 中使用字符串流的主要步骤和注意事项如下:1.创建输出字符串流并转换数据,如将整数转换为字符串。2.应用于复杂数据结构的序列化,如将vector转换为字符串。3.注意性能问题,避免在处理大量数据时频繁使用字符串流,可考虑使用std::string的append方法。4.注意内存管理,避免频繁创建和销毁字符串流对象,可以重用或使用std::stringstream。
