综述联邦学习技术及其应用在图像处理中的现状
近年来,图已被广泛应用于表示和处理很多领域的复杂数据,如医疗、交通运输、生物信息学和推荐系统等。图机器学习技术是获取隐匿在复杂数据中丰富信息的有力工具,并且在像节点分类和链接预测等任务中,展现出很强的性能。
尽管图机器学习技术取得了重大进展,但大多数都需要把图数据集中存储在单机上。然而,随着对数据安全和用户隐私的重视,集中存储数据变的不安全和不可行。图数据通常分布在多个数据源(数据孤岛),由于隐私和安全的原因,从不同的地方收集所需的图数据变的不可行。
例如一家第三方公司想为一些金融机构训练图机器学习模型,以帮助他们检测潜在的金融犯罪和欺诈客户。每个金融机构都拥有私有客户数据,如人口统计数据以及交易记录等。每个金融机构的客户形成一个客户图,其中边代表交易记录。由于严格的隐私政策和商业竞争,各个机构的私有客户数据无法直接与第三方公司或其它他机构共享。同时,机构之间也可能有关联,这可以看作是机构之间的结构信息。因此面临的主要挑战是:在不直接访问每个机构的私有客户数据的情况下,基于私有客户图和机构间结构信息,来训练用于金融犯罪检测的图机器学习模型。
联邦学习(FL)是一种分布式机器学习方案,通过协作训练解决数据孤岛问题。它使参与者(即客户)能够在不共享其私有数据的情况下联合训练机器学习模型。因此,将 FL 与图机器学习相结合成为解决上述问题的有希望的解决方案。
本文中,来自弗吉尼亚大学的研究者提出联邦图机器学习(FGML,Federated Graph Machine Learning)。一般来说,FGML 可以根据结构信息的级别分为两种设置:第一种是具有结构化数据的 FL,在具有结构化数据的 FL 中,客户基于其图数据协作训练图机器学习模型,同时将图数据保留在本地。第二种是结构化 FL,在结构化 FL 中,客户端之间存在结构信息,形成客户端图。可以利用客户端图设计更有效的联合优化方法。
论文地址:https://arxiv.org/pdf/2207.11812.pdf
虽然 FGML 提供了一个有前景的蓝图,但仍存在一些挑战:
1、跨客户端的信息缺失。在具有结构化数据的 FL 中,常见的场景是每个客户端机器都拥有全局图的子图,并且一些节点可能具有属于其他客户端的近邻。出于隐私考虑,节点只能在客户端内聚合其近邻的特征,但无法访问位于其它客户端上的特征,这导致节点表示不足。
2、图结构的隐私泄漏。在传统 FL 中,不允许客户端公开其数据样本的特征和标签。在具有结构化数据的 FL 中,还应考虑结构信息的隐私。结构信息可以通过共享邻接矩阵直接公开,也可以通过传输节点嵌入间接公开。
3、跨客户端的数据异构性。与传统 FL 中数据异构性来自 non-IID 数据样本不同,FGML 中的图数据包含丰富的结构信息。同时,不同客户的图结构也会影响图机器学习模型的性能。
4、参数使用的策略。在结构化 FL 中,客户端图使客户端能够从其相邻客户端获取信息。在结构化 FL 中,需要设计有效的策略,以充分利用由中心服务器协调或完全分散的近邻信息。
为了应对上述挑战,研究人员开发了大量算法。目前各种算法主要关注标准 FL 中的挑战和方法,只有少数人尝试解决 FGML 中的具体问题和技术。有人发表对 FGML 进行分类的综述性论文,但没有总结 FGML 中的主要技术。而有的综述文章仅涵盖了 FL 中数量有限的相关论文,并非常简要地介绍了目前现有的技术。
而在今天介绍的这篇论文中,作者首先介绍 FGML 中两种问题设计的概念。然后,回顾了每种 shezhi 下的最新的技术进展,还介绍了 FGML 的实际应用。并对可用于 FGML 应用的可访问图数据集和平台进行总结。最后,作者给出了几个有前途的研究方向。文章的主要贡献包括:
FGML 技术分类:文章给出了基于不同问题的 FGML 分类法,并总结了每个设置中的关键挑战。
全面的技术回顾:文章全面概述了 FGML 中的现有技术。与现有其它综述性论文相比,作者不仅研究了更广泛的相关工作,而且提供了更详细的技术分析,而不是简单地列出每种方法的步骤。
实际应用:文章首次总结 FGML 的实际应用。作者根据应用领域对其进行分类,并介绍每个领域中的相关工作。
数据集和平台:文章介绍了 FGML 中现有的数据集和平台,对于想在 FGML 中开发算法和部署应用程序的工程师和研究人员非常有帮助。
未来方向:文章不仅指出了现有方法的局限性,而且给出了 FGML 未来的发展方向。
FGML 技术综述 这里对文章的主要结构做下简介。
第 2 节简要介绍了图机器学习中的定义以及 FGML 中两种设置的概念和挑战。
第 3 节和第 4 节回顾了这两种设置中的主流技术。第 5 节进一步探讨了 FGML 在现实世界中的应用。第 6 节介绍了相关 FGML 论文中使用的开放图数据集和 FGML 的两个平台。在第 7 节中提供了未来可能的发展方向。
最后第 8 节对全文进行了总结。更多详细信息请参考原论文。
以上是综述联邦学习技术及其应用在图像处理中的现状的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,
