人工智能在数据中心实现净零碳的应用
如今,无论行业或部门,我们都面临着相同的压力和痛点:能源和燃料成本上升、原材料成本上升以及运营和利润率下降。与此同时,利益相关者也面临着减少碳排放和实现可持续发展目标的压力。
数据中心面临着来自各方的压力,环境法规和企业要求更环保的解决方案。
众所周知,数据中心是资源的巨大消耗者,对数据中心提供的计算能力的需求正以惊人的速度增长。随着全球对气候变化的关注日益增加,将可持续性纳入战略正成为数据中心运营和数据中心公关的基本因素。
但是,实现可持续发展目标的压力是否会带来额外的问题?
许多数据中心提供商已经制定了环保计划。然而,对显着减少碳排放的承诺和展示快速结果的愿望通常会导致碳抵消。
并非所有排放都可以避免或替代,减少碳排放可能涉及广泛的组织变革,这需要时间和投资。因此,许多组织确实走这条路,但抓住新举措作为提高可持续性的解决方案。他们关注具有易于计算回报的新的离散项目,例如替代技术,例如电动汽车 (EV) 或用 LED 或可再生能源替代照明。
他们经常错过的是通过提高整个运营过程中的能源效率,在他们已经获得的基础设施中快速获得可持续发展的胜利。
利用 AI 的力量更快地做出更好的业务决策
好消息是,基于人工智能 (AI) 的解决方案可以在六周内实现快速的可持续发展,并且可以轻松扩大规模以解锁整个运营的效率优化。
人工智能的最新进展可以分析来自任何行业的资产的海量数据集,而无需部署大型数据科学家团队(无论是风力涡轮机、光伏、喷气发动机、航运、石油和天然气泵、冷却还是 IT 服务器) ) 并使用模式识别生成实时洞察。这些洞察力提供了制定数据驱动型业务决策的能力,可以全面优化运营以提高能源效率、减少排放并跟踪实现可持续发展目标的进展。
许多环境没有很好地利用他们已经拥有的数据,并且人们认为需要数百个数据馈送来收集必要的洞察力以进行优化。实际上,只需五个数据馈送就足以做出显着的改进。
起点是通过连接来自实时传感器读数、数据库、来自单个设备(服务器、交换机、存储等)的遥测数据、工业资产(传感器、PLC 和控制系统、边缘设备)的数据来创建可靠的数据基线和其他内部数据源(ERP、企业应用程序、云文件存储)。
然后,人工智能会寻找最有效的方式来操作设备和资产,但不受用户定义的限制或参数的限制。通过搜索和推荐最接近的历史性能,人工智能可以使用帕累托前沿优化来模拟更好的性能,该优化满足定义的质量目标和过程限制以及推荐的控制设定点,从而立即降低能源成本和排放。
通过优化冷却和减少用水来减少能源、控制 CPU P 和 C 状态以匹配工作负载效率以及预测资产故障只是 AI 可以提供的一些好处。通过在闭环或开环中运行,可以实现 10 -40% 的节能并避免代价高昂的停机时间。
本地、托管和云提供商和客户都可以从人工智能中获益。人工智能技术加速数字化转型,优化能源成本与产量,最大化可再生能源组合,减少碳排放,并提供可持续发展指标报告,跟踪实时进展到净零。更准确的设备级跟踪(甚至到每个单独的内核)可以确保计费和范围 2 和 3 排放报告的准确性。
例如,QiO 与资产密集型和能源密集型行业合作,以提供人工智能驱动的可持续性。提高可持续性的第一条规则是弄清楚如何更好地利用你已经拥有的东西。我们相信,数据是事半功倍的关键,而人工智能提供了导航到净零所需的洞察力。
以上是人工智能在数据中心实现净零碳的应用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

本站6月18日消息,三星半导体近日在技术博客介绍了搭载其目前最新QLC闪存(v7)的下一代数据中心级固态硬盘BM1743。▲三星QLC数据中心级固态硬盘BM1743根据TrendForce集邦咨询4月的说法,在QLC数据中心级固态硬盘领域,仅有深耕多年的三星和SK海力士旗下Solidigm在当时通过了企业客户验证。相较上代v5QLCV-NAND(本站注:三星v6V-NAND无QLC产品),三星v7QLCV-NAND闪存在堆叠层数方面几乎翻了一倍,存储密度也大幅提升。同时v7QLCV-NAND的顺

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S
