在线体验70亿参数的StableLM大语言模型的稳定扩散时刻
大语言模型之战,Stability AI也下场了。
近日, Stability AI宣布推出他们的第一个大语言模型——StableLM。划重点:它是开源的,在GitHub上已经可用。
模型从3B和7B参数开始,随后会有15B到65B的版本。
并且, Stability AI还发布了用于研究的RLHF微调模型。
项目地址:https://github.com/Stability-AI/StableLM/
虽然OpenAI不open,但开源的社区已经百花齐放了。以前我们有Open Assistant、Dolly 2.0,现在,我们又有了StableLM。
实测体验
现在,我们可以在Hugging Face上试试StableLM微调聊天模型的demo。
具体StableLM能做到什么程度,一看便知。
比如,你可以问它如何制作花生酱三明治时,它会给你一个复杂、略显荒谬的食谱。
或者写一首神经网络与符号人工智能的史诗级说唱对决:
再或者写一封「吉祥话邮件」(文本生成):
以及,用C语言计算生命的意义(代码生成):
不过,有国外的媒体记者亲测了一下StableLM,结果发现:在一本正经地胡说八道这方面,它跟前辈ChatGPT比起来,也是不遑多让。
比如,如果问它2021年1月6日那天发生了什么?它会告诉你:特朗普的支持者控制了立法机关。
如果Stable LM预期的主要用途并不是文本生成,那它可以做什么呢?
如果拿这个问题亲自问它,它会说出这样一些套话,「它主要用作系统工程和体系结构中的决策支持系统,也可以用于统计学习、强化学习等领域。」
另外,Stable LM显然缺乏对某些敏感内容的保护。比如,给它进行一下著名的「不要赞美希特勒」测试,它的回答也是令人大跌眼镜。
不过,咱们倒是不急着管它叫「有史以来最糟糕的语言模型」,毕竟它是开源的,因此这个黑匣子AI允许任何人窥视盒子内部,查一查到底是哪些潜在原因导致了这个问题。
StableLM
Stability AI官方声称:Alpha版本的StableLM有30亿和70亿个参数,之后还有150亿到650亿参数的后续版本。
StabilityAI还豪横地表示,开发者随便用。只要遵守相关条款,不管是检查、应用还是改编基础模型,想怎么来怎么来。
StableLM功能强大,不光可以生成文本和代码,还能给下游应用提供技术基础。它是一个很好的范例,展示了小型、高效的模型通过适当训练就可以有足够高的性能。
早年间,Stability AI和非营利性研究中心Eleuther AI一起开发过早期的语言模型,可以说,Stability AI积淀很深。
像什么GPT-J、GPT-NeoX和Pythia,这都是两家公司合作训练的产物,在The Pile开源数据集上训练完成。
而后续的更多开源模型,比如Cerebras-GPT和Dolly-2都是上面三兄弟的后续产品。
说回StableLM,它是在建立在The Pile基础上的新数据集上训练的,该数据集包含1.5万亿个token,大约是The Pile的3倍。模型的上下文长度为4096个token。
在即将发布的技术报告中,Stability AI会公布模型的规模和训练设置。
作为概念验证,团队用斯坦福大学的Alpaca对模型进行了微调,并使用了最近的五个对话代理的数据集的组合:斯坦福大学的Alpaca、Nomic-AI的gpt4all、RyokoAI的ShareGPT52K数据集、Databricks labs的Dolly和Anthropic的HH。
这些模型将作为StableLM-Tuned-Alpha发布。当然,这些微调过的模型仅仅用于研究,属于非商业性质。
后续,Stability AI还将会公布新数据集的更多细节。
其中,新数据集十分丰富,这也是为什么StableLM的性能很棒。虽说参数规模目前来看还是有点小(和GPT-3 1750亿个参数相比是这样的)。
Stability AI表示,语言模型是数字时代的核心,我们希望每个人都能在语言模型中有发言权。
而StableLM的透明性。可访问性、支持性等特点也是践行了这个观念。
- StableLM的透明性:
体现透明性最好的方式就是开源。开发者可以深入到模型内部,验证性能、识别风险,并且一同开发一些保护措施。有需要的公司或部门还可以就着自己的需求对该模型进行调整。
- StableLM的可访问性:
日常用户可以随时随地在本地设备上运行该模型。开发人员可以应用模型来创建并使用硬件兼容的独立应用程序。这样一来,AI所带来的经济利益就不会被某几个企业瓜分,红利属于所有日常用户和开发者社群。
这是封闭模型所做不到的。
- StableLM的支持性:
Stability AI建立模型支持用户们,而不是取代。换句话说,开发出来便捷好用的AI是为了帮助人们更高效地处理工作,提供人们的创造力、生产力。而非试图开发一个天下无敌的东西取代一切。
Stability AI表示,目前这些模型已经在GitHub公布,未来还会有完整的技术报告问世。
Stability AI期待和广泛的开发者和研究人员进行合作。同时,他们还表示将启动众包RLHF计划,开放助手合作,为AI助手创建一个开源的数据集。
开源先驱之一
Stability AI这个名字,对我们来说已经是如雷贯耳了。它正是大名鼎鼎的图像生成模型Stable Diffusion背后的公司。
如今,随着StableLM的推出,可以说Stability AI在用AI造福所有人的路上越走越远了。毕竟,开源一向是他们的优良传统。
在2022年,Stability AI提供了多种方式让大家使用Stable Diffusion,包括公开demo、软件测试版和模型的完整下载,开发人员可以随意使用模型,进行各种集成。
作为一个革命性的图像模型,Stable Diffusion代表着一个透明、开放和可扩展的专有AI替代方案。
显然,Stable Diffusion让大家看到了开源的各种好处,当然也会有一些无法避免的坏处,但这无疑是一个有意义的历史节点。
(上个月,Meta的开源模型LLaMA的一场「史诗级」泄漏,产生了一系列表现惊艳的ChatGPT「平替」,羊驼家族像宇宙大爆炸一样噌噌地诞生:Alpaca、Vicuna、Koala、ChatLLaMA 、FreedomGPT、ColossalChat……)
不过,Stability AI也警告说,虽然它使用的数据集应该有助于「将基本的语言模型引导至更安全的文本分布中,但并不是所有的偏见和毒性都可以通过微调来减轻。」
争议:该不该开源?
这些天,我们见证了开源文本生成模型井喷式的增长,因为大大小小的公司都发现了:在越来越有利可图的生成式AI领域,出名要趁早。
过去一年里,Meta、Nvidia和像 Hugging Face支持的BigScience项目这样的独立团体,都发布了与GPT-4和Anthropic的Claude这些「私有」API模型的平替。
很多研究者严厉地批评了这些跟StableLM类似的开源模型,因为可能会有不法分子别有用心地利用它们,比如创建钓鱼邮件,或者协助恶意软件。
但Stablity AI坚持认为:开源就是最正确的路。
Stability AI强调,「我们把模型开源,是为了提高透明度和培养信任。研究人员可以深入了解这些模型,验证它们的性能、研究可解释性技术、识别潜在风险,并协助制定保护措施。」
「对我们模型的开放、细粒度访问,允许广大的研究和学术界人士,开发出超越封闭模型的可解释性和安全技术。」
Stablity AI的说法确实有道理。就算是GPT-4这样具有过滤器和人工审核团队的业内顶尖模型,也无法避免毒性。
并且,开源模型显然需要更多的努力来调整、修复后端——特别是如果开发人员没有跟上最新的更新的话。
其实追溯历史,Stability AI从来没有回避过争议。
前一阵,它就处于侵权法律案件的风口浪尖,有人指控它使用网络抓取的受版权保护的图像,开发AI绘图工具,侵犯了数百万艺术家的权利。
另外,已经有别有用心的人,利用Stability的AI工具,来生成许多名人的深度伪造色情图片,和充满暴力的图片。
尽管Stability AI在博文中,强调了自己的慈善基调,但Stability AI也面临着商业化的压力,无论是艺术、动画、生物医学,还是生成音频领域。
Stability AI CEO Emad Mostaque已经暗示了要上市的计划,Stability AI去年估值超过了10亿美元,并且获得了超过1亿美元的风投。不过,据外媒Semafor报道,Stability AI「正在烧钱,但在挣钱方面进展缓慢。」
以上是在线体验70亿参数的StableLM大语言模型的稳定扩散时刻的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

语言模型是对文本进行推理的,文本通常是字符串形式,但模型的输入只能是数字,因此需要将文本转换成数字形式。Tokenization是自然语言处理的基本任务,根据特定需求能够把一段连续的文本序列(如句子、段落等)切分为一个字符序列(如单词、短语、字符、标点等多个单元),其中的单元称为token或词语。根据下图所示的具体流程,首先将文本句子切分成一个个单元,然后将单元素数值化(映射为向量),再将这些向量输入到模型进行编码,最后输出到下游任务进一步得到最终的结果。文本切分按照文本切分的粒度可以将Toke

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

2018年谷歌发布了BERT,一经面世便一举击败11个NLP任务的State-of-the-art(Sota)结果,成为了NLP界新的里程碑;BERT的结构如下图所示,左边是BERT模型预训练过程,右边是对于具体任务的微调过程。其中,微调阶段是后续用于一些下游任务的时候进行微调,例如:文本分类,词性标注,问答系统等,BERT无需调整结构就可以在不同的任务上进行微调。通过”预训练语言模型+下游任务微调”的任务设计,带来了强大的模型效果。从此,“预训练语言模型+下游任务微调”便成为了NLP领域主流训

编译|星璇出品|51CTO技术栈(微信号:blog51cto)在过去的两年里,我更多地参与了使用大型语言模型(LLMs)的生成AI项目,而非传统的系统。我开始怀念无服务器云计算。它们的应用范围广泛,从增强对话AI到为各行各业提供复杂的分析解决方案,以及其他许多功能。许多企业将这些模型部署在云平台上,因为公共云提供商已经提供了现成的生态系统,而且这是阻力最小的路径。然而,这并不便宜。云还提供了其他好处,如可扩展性、效率和高级计算能力(按需提供GPU)。在公共云平台上部署LLM的过程有一些鲜为人知的

随着语言模型扩展到前所未有的规模,对下游任务进行全面微调变得十分昂贵。为了解决这个问题,研究人员开始关注并采用PEFT方法。PEFT方法的主要思想是将微调的范围限制在一小部分参数上,以降低计算成本,同时仍能实现自然语言理解任务的最先进性能。通过这种方式,研究人员能够在保持高性能的同时,节省计算资源,为自然语言处理领域带来新的研究热点。RoSA是一种新的PEFT技术,通过在一组基准测试的实验中,发现在使用相同参数预算的情况下,RoSA表现出优于先前的低秩自适应(LoRA)和纯稀疏微调方法。本文将深

2月25日消息,Meta在当地时间周五宣布,它将推出一种针对研究社区的基于人工智能(AI)的新型大型语言模型,与微软、谷歌等一众受到ChatGPT刺激的公司一同加入人工智能竞赛。Meta的LLaMA是“大型语言模型MetaAI”(LargeLanguageModelMetaAI)的缩写,它可以在非商业许可下提供给政府、社区和学术界的研究人员和实体工作者。该公司将提供底层代码供用户使用,因此用户可以自行调整模型,并将其用于与研究相关的用例。Meta表示,该模型对算力的要

近几年自然语言处理的进展很大程度上都来自于大规模语言模型,每次发布的新模型都将参数量、训练数据量推向新高,同时也会对现有基准排行进行一次屠榜!比如今年4月,Google发布5400亿参数的语言模型PaLM(Pathways Language Model)在语言和推理类的一系列测评中成功超越人类,尤其是在few-shot小样本学习场景下的优异性能,也让PaLM被认为是下一代语言模型的发展方向。同理,视觉语言模型其实也是大力出奇迹,可以通过提升模型的规模来提升性能。当然了,如果只是多任务的视觉语言模

译者 | 李睿审校 | 孙淑娟BigScience研究项目日前发布了一个大型语言模型BLOOM,乍一看,它看起来像是复制OpenAI的GPT-3的又一次尝试。 但BLOOM与其他大型自然语言模型(LLM)的不同之处在于,它在研究、开发、培训和发布机器学习模型方面所做的努力。近年来,大型科技公司将大型自然语言模型(LLM)就像严守商业机密一样隐藏起来,而BigScience团队从项目一开始就把透明与开放放在了BLOOM的中心。 其结果是一个大型语言模型,可以供研究和学习,并可供所有人使用。B
