机器学习在零售业中的关键应用领域
近年来,在封锁、宵禁、供应链中断和能源紧缩之间,零售商一定感觉很恐慌。但,幸运的是,零售业可以依靠全方位的技术创新来更好地应对这些困难时期的挑战。
这些技术中最有影响力的工具之一肯定是人工智能,包括其强大的子集——机器学习(ML)。下面,让我们简要介绍一下这项技术的本质,并探讨机器学习在零售业中的关键用例。
机器学习在零售业中的作用
零售中的机器学习依赖于自我改进的计算机算法,这些算法被创建来处理数据、发现变量之间的重复模式和异常,并自主学习这些关系如何影响或决定行业的趋势、现象和业务场景。
机器学习系统的自我学习和情境理解潜力可以在零售业中用于:
- 识别推动零售业的潜在动力。例如,基于机器学习的数据分析系统被广泛应用于营销领域,通过推荐引擎和基于客户数据的定向广告来个性化购物体验,还可以预测产品需求或其他市场趋势,从而优化库存管理、物流和定价策略。
- 推动与人工智能相关的认知技术,如计算机视觉和自然语言处理(NLP),它们分别从视觉和语言模式中识别和学习,以模仿人类视觉和交流。零售商通常使用这些工具从文本和视觉来源收集数据,支持聊天机器人和上下文购物等交互式解决方案,或用于视频监控。
10个重新定义零售业的机器学习用例
零售商如何从上述机器学习算法的能力中受益?以下是典型零售场景中一些最相关的机器学习用例。
1、定向广告
虽然主要用于电子商务,但有针对性的营销代表了一种强大的工具,可以将潜在客户引导至在线平台和传统商店。这涉及根据一系列行为、心理、人口统计和地理参数(如购买和浏览历史、年龄、性别、兴趣、地区等)对用户进行细分,并针对性投放完全个性化的广告和促销活动。
2、情境购物
一种不同的、更具交互性的解决方案可以吸引用户的注意力,并将其引导到自己的电子商务平台,这是上下文购物。这种营销工具利用机器学习和计算机视觉来识别和指出社交媒体上视频和图片中显示的商品,同时提供“快捷方式”以访问在线商店中的相关产品页面。
3、推荐引擎
一旦用户登陆在线平台,可能会在海量商品中迷失方向。推荐引擎是强大的工具,旨在将客户导向其可能真正需要的产品。
为了提供量身定制的建议,这些系统可以采用基于内容的过滤方法,即推荐与过去购买的商品具有相似特征的商品,或者选择协同过滤,这意味着建议其他客户订购的具有相似购买模式、个人特征的商品,和兴趣。
4、动态定价
由于机器学习,产品推荐和广告并不是唯一动态变化的东西。如今,大多数在线商店和电子商务平台会根据产品供求波动、竞争对手的促销和定价策略、更广泛的销售趋势等因素,不断调整价格。
5、聊天机器人
聊天机器人和虚拟助手是高度交互的工具,由机器学习和NLP提供支持,能够为客户提供全天候的用户支持(包括有关可用产品和运输选项的信息),同时发送提醒、优惠券和个性化建议以提升销售水平。
6、供应链管理
产品补货和其他库存管理操作绝不应听之任之。为了更好地匹配产品供需,优化仓库空间利用率,避免食物变质,值得依赖机器学习算法的分析和预测能力。这意味着要考虑多个变量,例如价格波动或基于季节性的购买模式,预测未来的销售趋势,并因此计划适当的补货计划。
7、交付优化
物流的另一个可以通过机器学习增强的方面是产品交付。由机器学习驱动的系统,在通过物联网传感器和摄像头网络收集的交通和天气数据的推动下,可以轻松计算出最快的送货路线。相反,通过处理用户数据,可能会推荐合适的交付方式,以更好地满足客户的需求。
8、自动驾驶汽车
这种用于产品交付的机器学习和计算机视觉的体现还远未得到完善和大规模实施。然而,像Amazon和Kroger这样的企业正在投资这项技术,相信很快可以依靠自动驾驶汽车来加快产品分销。
9、视频监控
机器学习驱动的计算机视觉系统可以驾驶车辆,还可以发现小偷。这些工具与传统视频监控解决方案之间的主要区别在于,后者基于一种相当不准确的基于规则的方法来识别入侵者,该方法存在大量误报。另一方面,机器学习系统可以识别更微妙的行为模式,并在发生可疑情况时向管理层发出警报。
10、欺诈检测
对于在线零售商和电子商务平台,小偷更可能从信用卡中盗窃,而不是从货架上偷。由于机器学习算法旨在识别重复出现的模式,因此其还可以查明任何偏离常态的事件,包括异常交易频率或账户数据不一致,并将其标记为可疑,以便进一步检查。
通过机器学习克服现代挑战
人工智能、机器学习和认知技术已被证明在增加利润和优化成本、个性化客户体验、提高物流和库存管理方面的运营效率,以及确保安全的零售环境方面具有无可估量的价值。
事实上,《财富》商业洞察力的2020年报告强调,到2028年,全球零售业人工智能市场预计将达到311.8亿美元,其中机器学习是其核心部分。
从零售的角度来看,这将使机器学习成为灯塔,在经历了两年多的风暴之后,可以找到正确的航线并停靠在安全的港口。
以上是机器学习在零售业中的关键应用领域的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

图像标注是将标签或描述性信息与图像相关联的过程,以赋予图像内容更深层次的含义和解释。这一过程对于机器学习至关重要,它有助于训练视觉模型以更准确地识别图像中的各个元素。通过为图像添加标注,使得计算机能够理解图像背后的语义和上下文,从而提高对图像内容的理解和分析能力。图像标注的应用范围广泛,涵盖了许多领域,如计算机视觉、自然语言处理和图视觉模型具有广泛的应用领域,例如,辅助车辆识别道路上的障碍物,帮助疾病的检测和诊断通过医学图像识别。本文主要推荐一些较好的开源免费的图像标注工具。1.Makesens

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

本文将介绍如何通过学习曲线来有效识别机器学习模型中的过拟合和欠拟合。欠拟合和过拟合1、过拟合如果一个模型对数据进行了过度训练,以至于它从中学习了噪声,那么这个模型就被称为过拟合。过拟合模型非常完美地学习了每一个例子,所以它会错误地分类一个看不见的/新的例子。对于一个过拟合的模型,我们会得到一个完美/接近完美的训练集分数和一个糟糕的验证集/测试分数。略有修改:"过拟合的原因:用一个复杂的模型来解决一个简单的问题,从数据中提取噪声。因为小数据集作为训练集可能无法代表所有数据的正确表示。"2、欠拟合如

通俗来说,机器学习模型是一种数学函数,它能够将输入数据映射到预测输出。更具体地说,机器学习模型就是一种通过学习训练数据,来调整模型参数,以最小化预测输出与真实标签之间的误差的数学函数。在机器学习中存在多种模型,例如逻辑回归模型、决策树模型、支持向量机模型等,每一种模型都有其适用的数据类型和问题类型。同时,不同模型之间存在着许多共性,或者说有一条隐藏的模型演化的路径。将联结主义的感知机为例,通过增加感知机的隐藏层数量,我们可以将其转化为深度神经网络。而对感知机加入核函数的话就可以转化为SVM。这一

20世纪50年代,人工智能(AI)诞生。当时研究人员发现机器可以执行类似人类的任务,例如思考。后来,在20世纪60年代,美国国防部资助了人工智能,并建立了实验室进行进一步开发。研究人员发现人工智能在许多领域都有用武之地,例如太空探索和极端环境中的生存。太空探索是对宇宙的研究,宇宙涵盖了地球以外的整个宇宙空间。太空被归类为极端环境,因为它的条件与地球不同。要在太空中生存,必须考虑许多因素,并采取预防措施。科学家和研究人员认为,探索太空并了解一切事物的现状有助于理解宇宙的运作方式,并为潜在的环境危机

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的
