解读2023毕业论文放榜:中稿胆战心惊?rebuttal难改宿命?审稿人是否带有偏见?

PHPz
发布: 2023-04-24 11:55:16
转载
1903 人浏览过

又到顶会放榜时,几家欢喜几家愁。

本次IJCAI 2023共收到4566份提交全文,接收率大约15%

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

问题链接:​https://www.zhihu.com/question/578082970​

从知乎上反馈的结果来看,整体审稿质量依然不尽如人意(也可能是被拒稿的怨念...),甚至有的审稿人根本没看rebuttal的内容就给拒了。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

也存在都是分数相同,但结局不同的论文。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

也有网友贴出meta review的拒绝理由,全是大缺点。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

不过拒稿并不是终点,更重要的是继续出发。

网友Lower_Evening_4056认为,即便是里程碑式的论文也会被多次拒稿,也有一些论文即便不够出色,也能被录用。

当你继续前行,再回过头来看那些合理的审稿意见时,你会发现自己的工作还能再上一个层次

审稿系统确实存在缺陷,更重要的是不要把reject看作是对你个人或作品价值的评估结果。如果你是一个学生,并且你的导师根据审稿结果而不是工作质量来评价你的话,那你可能就要重新考虑和导师的合作关系了。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

NeurIPS会议此前开展过一致性实验,对于平均分在5到6.5之间的论文,录用结果基本就是随机的,取决于你碰到的审稿人

比如说有个人的论文结果是9665,如果他没碰到给他9分的审稿人,那结果必然是reject,只不过他刚好碰到了伯乐,并且扭转了审稿结果。

最后,恭喜那些论文录用的科研人,助力推动人工智能研究的发展!

下面是一些在社交媒体上分享已录用的论文。

IJCAI 2023接收论文

端到端抗噪语音识别中多任务学习的梯度修正

在下游语音自动识别系统(ASR)中,语音增强学习策略(SE)被证明能够有效地减少噪声语音信号产生的噪声,该系统采用多任务学习策略对这两个任务进行联合优化。

然而,通过 SE 目标学习的增强语音并不总是产生良好的 ASR 结果。

从优化的角度来看,自适应任务和自适应反应任务的梯度之间有时会存在干扰,这会阻碍多任务学习,最终导致自适应反应性能不理想。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

论文链接:​https://arxiv.org/pdf/2302.11362.pdf​

这篇论文提出了一种简单而有效的梯度补偿(GR)方法来解决噪声鲁棒语音识别中任务梯度之间的干扰问题。

具体来说,首先将 SE 任务的梯度投影到一个与 ASR 梯度呈锐角的动态曲面上,以消除它们之间的冲突,协助 ASR 优化。

此外,自适应地调整两个梯度的大小,以防止主导 ASR 任务被 SE 梯度误导。

实验结果表明,该方法较好地解决了梯度干扰问题,在多任务学习基线上,在 RATS 和 CHiME-4数据集上分别实现了9.3% 和11.1% 的相对词错误率(WER)降低。

约束 Tsetlin 机器子句大小构建简明逻辑模式

Tsetlin 机器(TM)是一种基于逻辑的机器学习方法,具有透明和硬件友好的关键优势。

虽然 TM 在越来越多的应用程序中匹配或超越了深度学习的准确性,但是大子句池往往产生具有许多文字(长子句)的子句,使得它们变得不那么容易理解。

此外,较长的子句增加了硬件中子句逻辑的切换活动,具有更高的功耗。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

论文链接:​https://arxiv.org/abs/2301.08190​

这篇论文介绍了一种新的 TM 学习方法,即子句大小受限的子句学习方法(CSC-TM) ,可以对子句大小设置软约束。

一旦子句包含比约束允许的更多的字面值(literals),就开始排除字面值,因此只会短暂出现较大的子句。

为了评价 CSC-TM,研究人员对表格数据、自然语言文本、图像和棋盘游戏进行了分类、聚类和回归实验。

结果表明,CSC-TM 保持准确性与多达80倍的文字减少,实际上,TREC、 IMDb 和 BBC Sports 的子句越短,准确性就越高,在准确性达到峰值之后,当子句大小接近单个文字时,就会缓慢地下降。

文章最后分析了 CSC-TM 的功耗,得到了新的收敛性质。

#DNN-Verification问题:计算深度神经网络的不安全输入

深度神经网络越来越多地用于需要高安全级别的关键任务,比如说自动驾驶,虽然可以采用最先进的验证器来检查DNN是否是不安全的:

给定一些属性(即,是否存在至少一个不安全的输入配置)后,模型的yes/no输出对于其它目的(例如shielding、模型选择或训练改进)而言信息量不足。

2023放榜!接收率15%:中稿全凭运气?rebuttal没用?审稿人只盯负面评价?

论文链接:​https://arxiv.org/abs/2301.07068​

这篇论文介绍了#DNN-Verification问题,该问题涉及计算导致违反特定安全属性的DNN输入配置的数量,研究人员分析了这个问题的复杂性,并提出了一种新的方法,返回确切的违规计数。

由于问题是P-完备性的,文中提出了一个随机的近似方法,提供了一个可证明的概率界的正确计数,同时显着降低计算要求。

文中还提出了一组安全关键的基准,证明该近似方法的有效性和评估的约束的紧密性的实验结果。

以上是解读2023毕业论文放榜:中稿胆战心惊?rebuttal难改宿命?审稿人是否带有偏见?的详细内容。更多信息请关注PHP中文网其他相关文章!

相关标签:
来源:51cto.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板