Python中的生成器是如何工作的?
什么是python生成器
生成器是一种特殊的迭代器,它内部也有__iter__
方法和__next__
方法,在终止生成器的时候,还是会抛StopIteration
异常以此来退出循环,只不过相比于迭代器,生成器还有特性会保存“中间值”,下次运行的时候,还会借助这个“中间值”来操作。生成器的关键字是yield
,我们下面来写一个最简单的生成器。
#!/usr/bin/env python def printNums(): i = 0 while i<10: yield i i = i + 1 def main(): for i in printNums(): print(i) if __name__ == '__main__': main()
粗看代码,可能会觉着这个是个啥啊,为啥不直接用range
来生成,偏偏要用yield
,哎,不急,我们接着往下看为什么需要生成器,或者说,生成器解决了什么问题。
为什么需要python生成器
在说明这个问题之前,我们先来写一个需求,输出 0——10000000 以内的数据,而后运行查看导出内存运行截图。
调用python程序内存信息辅助说明
这里可以借助python
的memory_profiler
模块来检测程序内存的占用情况。
安装memory_profiler
库:
pip3 install memory_profiler
使用方法很简单,在需要检测的函数或者是代码前添加@profile
装饰器即可,例如:
@profile def main(): pass
生成.dat
文件
mprof run
导出图示,可以使用
mprof plot --output=filename
python案例代码
以下2个程序,都是输出0—9999999之间的数据,不同的是,第一个程序是使用range
而后给append
进list
中,第二个则是使用迭代器来生成该数据。
main.py
程序
@profile def main(): data = list(range(10000000)) for i in data: pass if __name__ == '__main__': main()
main_2.py
程序
def printNum(): i = 0 while i < 10000000: yield i i = i + 1 @profile def main(): for i in printNum(): pass if __name__ == '__main__': main()
运行程序
代码也有了,就可以按照上述来运行一下程序,并且导出内存信息
运行后内存信息查看
main.py
运行内存图
main_2.py
运行内存图
如上2张对比图,当我们将数据叠加进列表,再输出的时候,占用内存接近400M,而使用迭代器来计算下一个值内存仅使用16M。
通过上述案例,我们应该知道为什么要使用生成器了吧。
python生成器原理
由于生成器表达式yield
语句涉及到了python
解释权内部机制,所以很难查看其源码,很难获取其原理,不过我们可以利用yield
的暂停机制,来探寻一下生成器。
可以编写如下代码:
def testGenerator(): print("进入生成器") yield "pdudo" print("第一次输出") yield "juejin" print("第二次输出") def main(): xx = testGenerator() print(next(xx)) print(next(xx)) if __name__ == '__main__': main()
运行后效果如下
通过上述实例,再结合下面这段生成器的运行过程,会加深对生成器的感触。
当python
遇到yield
语句时,会记录当前函数的运行状态,并且暂停执行,将结果抛出。会持续等待下一次调用__next__
方法,该方法调用后,会恢复函数的运行,直至下一个yield
语句或者函数结束,执行到最后没有yield
函数可执行的时候,会抛StopIteration
来标志生成器的结束。
生成器表达式
在python
中,生成器除了写在函数中,使用yield
返回之外,还可以直接使用生成器表达式,额。。。可能很抽象,但是你看下面这段代码,你就明白了。
def printNums(): for i in [1,2,3,4,5]: yield i def main(): for i in printNums(): print(i) gener = (i for i in [1,2,3,4,5]) for i in gener: print(i) if __name__ == '__main__': main()
其中,代码(i for i in [1,2,3,4,5])
就等同于printNums
函数,其类型都是生成器,我们可以使用type
打印出来看下。
改下代码,输出结果如下:
以上是Python中的生成器是如何工作的?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

用大多数文本编辑器即可打开XML文件;若需更直观的树状展示,可使用 XML 编辑器,如 Oxygen XML Editor 或 XMLSpy;在程序中处理 XML 数据则需使用编程语言(如 Python)与 XML 库(如 xml.etree.ElementTree)来解析。

XML 美化本质上是提高其可读性,包括合理的缩进、换行和标签组织。其原理是通过遍历 XML 树,根据层级增加缩进,并处理空标签和包含文本的标签。Python 的 xml.etree.ElementTree 库提供了方便的 pretty_xml() 函数,可以实现上述美化过程。

修改XML内容需要编程,因为它需要精准找到目标节点才能增删改查。编程语言有相应库来处理XML,提供API像操作数据库一样进行安全、高效、可控的操作。

没有简单、直接的免费手机端XML转PDF工具。需要的数据可视化过程涉及复杂的数据理解和渲染,市面上所谓的“免费”工具大多体验较差。推荐使用电脑端的工具或借助云服务,或自行开发App以获得更靠谱的转换效果。

手机XML转PDF的速度取决于以下因素:XML结构的复杂性手机硬件配置转换方法(库、算法)代码质量优化手段(选择高效库、优化算法、缓存数据、利用多线程)总体而言,没有绝对的答案,需要根据具体情况进行优化。

直接在手机上将XML转换为PDF并不容易,但可以借助云端服务实现。推荐使用轻量级手机App上传XML文件并接收生成的PDF,配合云端API进行转换。云端API使用无服务器计算服务,选择合适的平台至关重要。处理XML解析和PDF生成时需要考虑复杂性、错误处理、安全性和优化策略。整个过程需要前端App与后端API协同工作,需要对多种技术有所了解。

无法找到一款将 XML 直接转换为 PDF 的应用程序,因为它们是两种根本不同的格式。XML 用于存储数据,而 PDF 用于显示文档。要完成转换,可以使用编程语言和库,例如 Python 和 ReportLab,来解析 XML 数据并生成 PDF 文档。

XML格式化工具可以将代码按照规则排版,提高可读性和理解性。选择工具时,要注意自定义能力、对特殊情况的处理、性能和易用性。常用的工具类型包括在线工具、IDE插件和命令行工具。
