世界超大AI芯片打破单设备训练大模型记录 ,Cerebras要「杀死」GPU
本文转自雷锋网,如需转载请至雷锋网官网申请授权。
以造出世界上最大加速器芯片CS-2 Wafer Scale Engine闻名的公司Cerebras昨日宣布他们已经在利用“巨芯”进行人工智能训练上走出了重要的一步。该公司训练出了单芯片上全世界最大的NLP(自然语言处理)AI模型。
该模型具有20亿个参数,基于CS-2芯片进行训练。这块全世界最大的加速器芯片采用7nm制程工艺,由一整块方形的晶圆刻蚀而成。它的大小数百倍于主流芯片,具有15KW的功率。它集成了2.6万亿个7nm晶体管,封装了850000个内核和40GB内存。
图1 CS-2 Wafer Scale Engine芯片
单芯片训练AI大模型新纪录
NLP模型的开发是人工智能中的一个重要领域。利用NLP模型,人工智能可以“理解”文字含义,并进行相应的动作。OpenAI的DALL.E模型就是一个典型的NLP模型。这个模型可以将使用者的输入的文字信息转化为图片输出。
比如当使用者输入“牛油果形状的扶手椅”后,AI就会自动生成若干与这句话对应的图像。
图:AI接收信息后生成的“牛油果形状扶手椅”图片
不止于此,该模型还能够使AI理解物种、几何、历史时代等复杂的知识。
但要实现这一切并不容易,NLP模型的传统开发具有极高的算力成本和技术门槛。
实际上,如果只讨论数字,Cerebras开发的这一模型20亿的参数量在同行的衬托下,显得有些平平无奇。
前面提到的DALL.E模型具有120亿个参数,而目前最大的模型是DeepMind于去年年底推出的Gopher,具有2800亿个参数。
但除去惊人的数字外,Cerebras开发的NLP还有一个巨大的突破:它降低了NLP模型的开发难度。
「巨芯」如何打败GPU?
按照传统流程,开发NLP模型需要开发者将巨大的NLP模型切分若干个功能部分,并将他们的工作负载分散到成百上千个图形处理单元上。
数以千百计的图形处理单元对厂商来说意味着巨大的成本。
技术上的困难也同样使厂商们痛苦不堪。
切分模型是一个定制的问题,每个神经网络、每个GPU的规格、以及将他们连接(或互联)在一起的网络都是独一无二的,并且不能跨系统移植。
厂商必须在第一次训练前将这些因素统统考虑清楚。
这项工作极其复杂,有时候甚至需要几个月的时间才能完成。
Cerebras表示这是NLP模型训练中“最痛苦的方面之一”。只有极少数公司拥有开发NLP所必要的资源和专业知识。对于人工智能行业中的其他公司而言,NLP的训练则太昂贵、太耗时且无法使用。
但如果单个芯片就能够支持20亿个参数的模型,就意味着不需要使用海量的GPU分散训练模型的工作量。这可以为厂商节省数千个GPU的训练成本和相关的硬件、扩展要求。同时这也使厂商不必经历切分模型并将其工作负载分配给数千个GPU的痛苦。
Cerebras也并未仅仅执拗于数字,评价一个模型的好坏,参数的数量并不是唯一标准。
比起希望诞生于“巨芯”上的模型“努力”,Cerebras更希望的是模型“聪明”。
之所以Cerebras能够在参数量上取得爆炸式增长,是因为利用了权重流技术。这项技术可以将计算和内存的占用量解耦,并允许将内存扩展到足以存储AI工作负载中增加的任何数量的参数。
由于这项突破,设置模型的时间从几个月减少到了几分钟。并且开发者在GPT-J和GPT-Neo等型号之间“只需几次按键”就可以完成切换。这让NLP的开发变得更加简单。
这使得NLP领域出现了新的变化。
正如Intersect360 Research 首席研究官 Dan Olds 对Cerebras取得成就的评价:“Cerebras 能够以具有成本效益、易于访问的方式将大型语言模型带给大众,这为人工智能开辟了一个激动人心的新时代。”
以上是世界超大AI芯片打破单设备训练大模型记录 ,Cerebras要「杀死」GPU的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Vue.js 中字符串转对象时,首选 JSON.parse() 适用于标准 JSON 字符串。对于非标准 JSON 字符串,可根据格式采用正则表达式和 reduce 方法或解码 URL 编码字符串后再处理。根据字符串格式选择合适的方法,并注意安全性与编码问题,以避免 bug。

MySQL性能优化需从安装配置、索引及查询优化、监控与调优三个方面入手。1.安装后需根据服务器配置调整my.cnf文件,例如innodb_buffer_pool_size参数,并关闭query_cache_size;2.创建合适的索引,避免索引过多,并优化查询语句,例如使用EXPLAIN命令分析执行计划;3.利用MySQL自带监控工具(SHOWPROCESSLIST,SHOWSTATUS)监控数据库运行状况,定期备份和整理数据库。通过这些步骤,持续优化,才能提升MySQL数据库性能。

文章介绍了MySQL数据库的上手操作。首先,需安装MySQL客户端,如MySQLWorkbench或命令行客户端。1.使用mysql-uroot-p命令连接服务器,并使用root账户密码登录;2.使用CREATEDATABASE创建数据库,USE选择数据库;3.使用CREATETABLE创建表,定义字段及数据类型;4.使用INSERTINTO插入数据,SELECT查询数据,UPDATE更新数据,DELETE删除数据。熟练掌握这些步骤,并学习处理常见问题和优化数据库性能,才能高效使用MySQL。

利用地理空间技术高效处理700万条记录并创建交互式地图本文探讨如何使用Laravel和MySQL高效处理超过700万条记录,并将其转换为可交互的地图可视化。初始挑战项目需求:利用MySQL数据库中700万条记录,提取有价值的见解。许多人首先考虑编程语言,却忽略了数据库本身:它能否满足需求?是否需要数据迁移或结构调整?MySQL能否承受如此大的数据负载?初步分析:需要确定关键过滤器和属性。经过分析,发现仅少数属性与解决方案相关。我们验证了过滤器的可行性,并设置了一些限制来优化搜索。地图搜索基于城

MySQL启动失败的原因有多种,可以通过检查错误日志进行诊断。常见原因包括端口冲突(检查端口占用情况并修改配置)、权限问题(检查服务运行用户权限)、配置文件错误(检查参数设置)、数据目录损坏(恢复数据或重建表空间)、InnoDB表空间问题(检查ibdata1文件)、插件加载失败(检查错误日志)。解决问题时应根据错误日志进行分析,找到问题的根源,并养成定期备份数据的习惯,以预防和解决问题。

MySQL 主键不可以为空,因为主键是唯一标识数据库中每一行的关键属性,如果主键可以为空,则无法唯一标识记录,将会导致数据混乱。使用自增整型列或 UUID 作为主键时,应考虑效率和空间占用等因素,选择合适的方案。

远程高级后端工程师职位空缺公司:Circle地点:远程办公职位类型:全职薪资:$130,000-$140,000美元职位描述参与Circle移动应用和公共API相关功能的研究和开发,涵盖整个软件开发生命周期。主要职责独立完成基于RubyonRails的开发工作,并与React/Redux/Relay前端团队协作。为Web应用构建核心功能和改进,并在整个功能设计过程中与设计师和领导层紧密合作。推动积极的开发流程,并确定迭代速度的优先级。要求6年以上复杂Web应用后端

MySQL拒启动?别慌,咱来排查!很多朋友安装完MySQL后,发现服务死活启动不了,心里那个急啊!别急,这篇文章带你从容应对,揪出幕后黑手!读完后,你不仅能解决这个问题,还能提升对MySQL服务的理解,以及排查问题的思路,成为一名更强大的数据库管理员!MySQL服务启动失败,原因五花八门,从简单的配置错误到复杂的系统问题都有可能。咱们先从最常见的几个方面入手。基础知识:服务启动流程简述MySQL服务启动,简单来说,就是操作系统加载MySQL相关的文件,然后启动MySQL守护进程。这其中涉及到配置
