目录
1.  引言
2. 背景知识
3. 目标函数
首页 科技周边 人工智能 多模态自监督学习:探讨目标函数、数据对齐和模型架构——以爱丁堡最新综述为例

多模态自监督学习:探讨目标函数、数据对齐和模型架构——以爱丁堡最新综述为例

Apr 26, 2023 am 10:04 AM
模型

多模态学习旨在理解和分析来自多种模态的信息,近年来在监督机制方面取得了实质性进展。

然而,对数据的严重依赖加上昂贵的人工标注阻碍了模型的扩展。与此同时,考虑到现实世界中大规模的未标注数据的可用性,自监督学习已经成为缓解标注瓶颈的一种有吸引力的策略。

基于这两个方向,自监督多模态学习(SSML)提供了从原始多模态数据中利用监督的方法。

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

论文地址:https://arxiv.org/abs/2304.01008

项目地址:https://github.com/ys-zong/awesome-self-supervised-multimodal-learning

在本综述中,我们对SSML的最先进技术进行了全面的回顾,我们沿着三个正交的轴进行分类: 目标函数、数据对齐和模型架构。这些坐标轴对应于自监督学习方法和多模态数据的固有特征。

具体来说,我们将训练目标分为实例判别、聚类和掩码预测类别。我们还讨论了训练期间的多模态输入数据配对和对齐策略。最后,回顾了模型架构,包括编码器、融合模块和解码器的设计,这些是SSML方法的重要组成部分。

回顾了下游的多模态应用任务,报告了最先进的图像-文本模型和多模态视频模型的具体性能,还回顾了SSML算法在不同领域的实际应用,如医疗保健、遥感和机器翻译。最后,讨论了SSML面临的挑战和未来的方向。

1.  引言

类通过各种感官感知世界,包括视觉、听觉、触觉和嗅觉。我们通过利用每个模态的互补信息来全面了解我们的周围环境。AI研究一直致力于开发模仿人类行为并以类似方式理解世界的智能体。为此,多模态机器学习领域[1]、[2]旨在开发能够处理和整合来自多个不同模态的数据的模型。近年来,多模态学习取得了重大进展,导致了视觉和语言学习[3]、视频理解[4]、[5]、生物医学[6]、自动驾驶[7]等领域的一系列应用。更根本的是,多模态学习正在推进人工智能中长期存在的接地问题[8],使我们更接近更一般的人工智能。

然而,多模态算法往往仍然需要昂贵的人工标注才能进行有效的训练,这阻碍了它们的扩展。最近,自监督学习(SSL)[9],[10]已经开始通过从现成的标注数据中生成监督来缓解这一问题。单模态学习中自监督的定义相当完善,仅取决于训练目标,以及是否利用人工标注进行监督。然而,在多模态学习的背景下,它的定义则更为微妙。在多模态学习中,一种模态经常充当另一种模态的监督信号。就消除人工标注瓶颈进行向上扩展的目标而言,定义自我监督范围的关键问题是跨模态配对是否自由获取。

通过利用免费可用的多模态数据和自监督目标,自监督多模态学习(SSML)显著增强了多模态模型的能力。在本综述中,我们回顾了SSML算法及其应用。我们沿着三个正交的轴分解各种方法:目标函数、数据对齐和模型架构。这些坐标轴对应于自监督学习算法的特点和多模态数据所需的具体考虑。图1提供了拟议分类法的概述。基于前置任务,我们将训练目标分为实例判别、聚类和掩码预测类别。还讨论了将这些方法中的两种或两种以上结合起来的混合方法。

多模态自监督所特有的是多模态数据配对的问题。模态之间的配对,或者更一般的对齐,可以被SSML算法利用作为输入(例如,当使用一种模态为另一种模态提供监督时),但也可以作为输出(例如,从未配对的数据中学习并将配对作为副产品诱导)。我们讨论了对齐在粗粒度上的不同作用,这种粗粒度通常被假定在多模态自监督中免费可用(例如,网络爬取的图像和标题[11]);有时由SSML算法显式或隐式诱导的细粒度对齐(例如,标题词和图像块[12]之间的对应关系)。此外,我们探索了目标函数和数据对齐假设的交集。

还分析了当代SSML模型架构的设计。具体来说,我们考虑编码器和融合模块的设计空间,将特定模式的编码器(没有融合或具有后期融合)和具有早期融合的统一编码器进行对比。我们也检查具有特定解码器设计的架构,并讨论这些设计选择的影响。

最后,讨论了这些算法在多个真实世界领域的应用,包括医疗保健、遥感、机器翻译等,并对SSML的技术挑战和社会影响进行了深入讨论,指出了潜在的未来研究方向。我们总结了在方法、数据集和实现方面的最新进展,为该领域的研究人员和从业人员提供一个起点。

现有的综述论文要么只关注有监督的多模态学习[1],[2],[13],[14],或单模态自监督学习[9],[10],[15],或SSML的某个子区域,例如视觉-语言预训练[16]。最相关的综述是[17],但它更侧重于时间数据,忽略了对齐和架构的多模态自监督的关键考虑因素。相比之下,我们提供了一个全面和最新的SSML算法综述,并提供了一个涵盖算法、数据和架构的新分类法。

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

2. 背景知识

多模态学习中的自监督

我们首先描述了本次调研中所考虑的SSML的范围,因为这个术语在之前的文献中使用不一致。通过调用不同借口任务的无标签性质,在单模态环境中定义自监督更为直接,例如,著名的实例辨别[20]或掩盖预测目标[21]实现了自监督。相比之下,多模态学习中的情况更加复杂,因为模态和标签的作用变得模糊。例如,在监督图像字幕[22]中,文本通常被视为标签,但在自监督多模态视觉和语言表示学习[11]中,文本则被视为输入模态。

在多模态环境中,术语自监督已被用于指至少四种情况:(1)从自动成对的多模态数据中进行无标签学习——例如带有视频和音频轨道的电影[23],或来自RGBD摄像机[24]的图像和深度数据。(2)从多模态数据中学习,其中一个模态已经被手动标注,或者两个模态已经被手动配对,但这个标注已经为不同的目的创建,因此可以被认为是免费的,用于SSML预训练。例如,从网络爬取的匹配图像-标题对,如开创性的CLIP[11]所使用的,实际上是监督度量学习[25],[26]的一个例子,其中配对是监督。然而,由于模式和配对都是大规模免费提供的,因此它通常被描述为自监督的。这种未经策划的偶然创建的数据通常比专门策划的数据集(如COCO[22]和Visual Genome[27])质量更低,噪音更大。(3)从高质量的目的标注的多模态数据(例如,COCO[22]中的手动字幕图像)中学习,但具有自监督的风格目标,例如Pixel-BERT[28]。(4)最后,还有一些“自监督”方法,它们混合使用免费和手动标注的多模态数据[29],[30]。为了本次调查的目的,我们遵循自监督的思想,旨在通过打破手动标注的瓶颈来扩大规模。因此,就能够在免费可用的数据上进行训练而言,我们包括了前面两类和第四类方法。我们排除了仅显示用于手动管理数据集的方法,因为它们在管理数据集上应用典型的“自监督”目标(例如,屏蔽预测)。

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

(a)监督式多模态学习和(b)自监督式多模态学习的学习范式:无手动标注的自监督预训练(上);对下游任务进行监督微调(下)。

3. 目标函数

在本节中,我们将介绍用于训练三类自监督多模态算法的目标函数:实例判别、聚类和掩盖预测。最后我们还讨论了混合目标。

3.1 实例判别

在单模学习中,实例判别(instance discrimination, ID)将原始数据中的每个实例视为一个单独的类,并对模型进行训练,以区分不同的实例。在多模态学习的背景下,实例判别通常旨在确定来自两个输入模态的样本是否来自同一个实例,即配对。通过这样做,它试图对齐成对模式的表示空间,同时将不同实例对的表示空间推得更远。有两种类型的实例识别目标:对比预测和匹配预测,这取决于输入是如何采样的。

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

3.2 聚类

聚类方法假设应用经过训练的端到端聚类将导致根据语义显著特征对数据进行分组。在实践中,这些方法迭代地预测编码表示的聚类分配,并使用这些预测(也称为伪标签)作为监督信号来更新特征表示。多模态聚类提供了学习多模态表示的机会,还通过使用每个模态的伪标签监督其他模态来改进传统聚类。

3.3 掩码预测

掩码预测任务可以采用自动编码(类似于BERT[101])或自动回归方法(类似于GPT[102])来执行。

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

多模态如何自监督?爱丁堡等最新「自监督多模态学习」综述:目标函数、数据对齐和模型架构

以上是多模态自监督学习:探讨目标函数、数据对齐和模型架构——以爱丁堡最新综述为例的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 谷歌狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理训练最快选择 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt 时间序列预测+NLP大模型新作:为时序预测自动生成隐式Prompt Mar 18, 2024 am 09:20 AM

今天我想分享一个最新的研究工作,这项研究来自康涅狄格大学,提出了一种将时间序列数据与自然语言处理(NLP)大模型在隐空间上对齐的方法,以提高时间序列预测的效果。这一方法的关键在于利用隐空间提示(prompt)来增强时间序列预测的准确性。论文标题:S2IP-LLM:SemanticSpaceInformedPromptLearningwithLLMforTimeSeriesForecasting下载地址:https://arxiv.org/pdf/2403.05798v1.pdf1、问题背景大模型

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles