目录
Stable Diffusion如何压缩图像
首页 科技周边 人工智能 Stable Diffusion能超越JPEG等算法,提高图像压缩率并保持清晰度?

Stable Diffusion能超越JPEG等算法,提高图像压缩率并保持清晰度?

Apr 27, 2023 am 08:28 AM
算法 图像

基于文本的图像生成模型火了,出圈的不止有扩散模型,还有开源的Stable Diffusion模型。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

最近一位瑞士的软件工程师Matthias Bühlmann无意间发现,Stable Diffusion不仅能用来生成图像,还可以用来压缩位图图像,甚至比JPEG和WebP的压缩率更高。

比如一张美洲骆驼的照片,原图为768KB,使用JPEG压缩到5.66KB,而Stable Diffusion可以进一步压缩到4.98KB,而且能够保留更多高分辨率的细节以及更少的压缩伪影,肉眼可见地优于其他压缩算法。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

不过这种压缩方式也存在缺陷,即不适合压缩人脸和文本图像,在某些情况下,甚至会生成一些原图并不存在内容

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然重新训练一个自编码器也能做到类似于Stable Diffusion的压缩效果,但使用Stable Diffusion的一个主要优势在于,有人已经投入了上百万的资金帮你训练了一个,你又何必重新花钱训练一个压缩模型呢?

Stable Diffusion如何压缩图像

扩散模型正在挑战生成模型的霸主地位,对应的开源Stable Diffusion模型也在机器学习社区掀起一场艺术革命。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

Stable Diffusion由三个训练后的神经网络串联得到,即一个变分自编码器(VAE)U-Net模型一个文本编码器

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

变分自编码器对图像空间中的图像进行编码和解码,从而获得该图像在潜空间的表征向量,以一个分辨率更低(64x64)具有更高精度(4x32bit)的向量来表示源图像(3x8或4x8bit的512x512)

VAE在将图像编码到潜空间的训练过程主要依赖自监督学习,即输入和输出都是源图像,因此随着模型进一步训练,不同版本的模型的潜空间表征可能会看起来不同。

使用Stable Diffusion v1.4的潜空间表征通过重新映射和解释为4通道彩色图像后,看起来就是下图的中间图像,源图像中的主要特征仍然可见

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

需要注意的是,VAE往返编码一次并不是无损的

比如在解码之后,蓝色带子上的ANNA名字就没有源图像那么清晰了,可读性显著降低。

Stable Diffusion v1.4中的变分自编码器不太擅长表示小文本以及人脸图像,不知道在v1.5版本中是否会改善。

Stable Diffusion的主要压缩算法就是利用图像的这种潜空间表征,从短文本描述中生成新的图像。

从潜空间表征的随机噪声开始,使用充分训练的U-Net迭代去除潜空间图像的噪声,用一种更简单的表征输出模型认为它在这个噪声中「看到」的预测,有点像我们在看云的时候,从不规则的图形中还原出脑海里的形状或面孔

当使用Stable Diffusion来生成图像时,这个迭代去噪步骤是由第三个组件,即文本编码器引导的,该编码器为U-Net提供关于它应该尝试在噪声中看到什么的信息。

不过对于压缩任务来说,并不需要文本编码器,所以实验过程只创建了一个空字符串的编码用于告诉U-Net在图像重建过程中进行非引导去噪

为了使用Stable Diffusion作为图像压缩编解码器,算法需要有效地压缩由VAE产生的潜表征。

在实验中可以发现,对潜表征进行下采样或者直接使用现有的有损图像压缩方法,都会大大降低重建图像的质量。

但作者发现 VAE 的解码似乎对潜表征的量化(quantization)非常有效。

通过对从浮点到8位无符号整数的潜量化进行缩放、拖拽(clamping)和重新映射,只会产生很小的可见重构错误。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

通过量化8位的潜表征,图像表示的数据大小现在是64*64*4*8bit=16kB ,远小于未压缩源图像的512*512*3*8bit=768kB

如果潜表征的位数小于8bit,无法产生比较好的效果。

如果对图像进一步执行调色板(palettizing)抖动(dithering),则量化效果就会再次提升。

使用256*4*8位向量和Floyd-Steinberg抖动的潜表征创建了一个调色板表示,使数据大小进一步压缩到64*64*8+256*4*8bit=5kB

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

潜空间调色板的抖动会引入噪声,从而扭曲了解码结果。但由于Stable Diffusion是基于潜噪声的去除,所以可以使用U-Net去除抖动引起的噪声。

经过4次迭代,重建结果在视觉上非常接近未量化的版本。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然数据量大大减少了(源图像为压缩图像的155倍大),但效果是非常好的,不过也引入了一些伪影(比如原图的心形图案中不存在伪影)。

有趣的是,这种压缩方案引入的伪影对图像内容的影响比对图像质量的影响更大,而且以这种方式压缩的图像可能包含这些类型的压缩伪影。

作者还用zlib对调色板和索引进行了无损压缩,在测试样本中,大多数的压缩结果都小于5kb,但这种压缩方法仍然存在更多的优化空间。

为了评估该压缩编解码器,作者没有使用任何在网上找到的标准测试图像,因为网上的图像都有可能在Stable Diffusion的训练集中出现过,而压缩这类图像可能会导致不公平的对比优势。

为了尽可能公平地进行比较,作者使用了Python图像库中最高质量的编码器设置,以及使用mozjpeg库添加了压缩后的JPG数据的无损数据压缩。

值得注意的是,虽然Stable Diffusion的结果主观上看起来比JPG和WebP压缩的图像要好得多,但在标准测量指标(如PSNR或SSIM)方面,它们并没有明显更好,但也没有更差。

只是引入的伪影类型不那么明显,因为它们对图像内容的影响大于对图像质量的影响。

这种压缩方法也有一点危险,虽然重建特征的质量很高,但内容可能会受到压缩伪影的影响,即使它看起来非常清晰。

例如,在一张测试图像中,虽然Stable Diffusion作为编解码器在保持图像的质量方面要好得多,甚至连相机颗粒纹理(camera grain)都能保留下来(这是大多数传统压缩算法难以做到的) ,但其内容仍然受到压缩伪影的影响,像建筑物形状这样的精细特征可能会发生变化。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

虽然在JPG压缩图像中当然不可能比在Stable Diffusion压缩图像中识别出更多的真实值,但是Stable Diffusion压缩结果的高视觉质量可能具有欺骗性,因为JPG和WebP中的压缩伪影更容易识别。

如果你也想动手复现一遍实验,作者在Colab上开源了代码。

Stable Diffsuion还能用来压缩图像?压缩率更高,清晰度超越JPEG等算法

代码链接:​https://colab.research.google.com/drive/1Ci1VYHuFJK5eOX9TB0Mq4NsqkeDrMaaH?usp=sharing​

最后,作者表示,文章中设计的实验仍然是相当浅显的,但效果仍然令人惊喜,未来仍然有很大的改进空间

以上是Stable Diffusion能超越JPEG等算法,提高图像压缩率并保持清晰度?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 CLIP-BEVFormer:显式监督BEVFormer结构,提升长尾检测性能 Mar 26, 2024 pm 12:41 PM

写在前面&笔者的个人理解目前,在整个自动驾驶系统当中,感知模块扮演了其中至关重要的角色,行驶在道路上的自动驾驶车辆只有通过感知模块获得到准确的感知结果后,才能让自动驾驶系统中的下游规控模块做出及时、正确的判断和行为决策。目前,具备自动驾驶功能的汽车中通常会配备包括环视相机传感器、激光雷达传感器以及毫米波雷达传感器在内的多种数据信息传感器来收集不同模态的信息,用于实现准确的感知任务。基于纯视觉的BEV感知算法因其较低的硬件成本和易于部署的特点,以及其输出结果能便捷地应用于各种下游任务,因此受到工业

使用C++实现机器学习算法:常见挑战及解决方案 使用C++实现机器学习算法:常见挑战及解决方案 Jun 03, 2024 pm 01:25 PM

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

探究C++sort函数的底层原理与算法选择 探究C++sort函数的底层原理与算法选择 Apr 02, 2024 pm 05:36 PM

C++sort函数底层采用归并排序,其复杂度为O(nlogn),并提供不同的排序算法选择,包括快速排序、堆排序和稳定排序。

人工智能可以预测犯罪吗?探索CrimeGPT的能力 人工智能可以预测犯罪吗?探索CrimeGPT的能力 Mar 22, 2024 pm 10:10 PM

人工智能(AI)与执法领域的融合为犯罪预防和侦查开辟了新的可能性。人工智能的预测能力被广泛应用于CrimeGPT(犯罪预测技术)等系统,用于预测犯罪活动。本文探讨了人工智能在犯罪预测领域的潜力、目前的应用情况、所面临的挑战以及相关技术可能带来的道德影响。人工智能和犯罪预测:基础知识CrimeGPT利用机器学习算法来分析大量数据集,识别可以预测犯罪可能发生的地点和时间的模式。这些数据集包括历史犯罪统计数据、人口统计信息、经济指标、天气模式等。通过识别人类分析师可能忽视的趋势,人工智能可以为执法机构

改进的检测算法:用于高分辨率光学遥感图像目标检测 改进的检测算法:用于高分辨率光学遥感图像目标检测 Jun 06, 2024 pm 12:33 PM

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

如何使用 iOS 17 在 iPhone 上编辑照片 如何使用 iOS 17 在 iPhone 上编辑照片 Nov 30, 2023 pm 11:39 PM

移动摄影从根本上改变了我们捕捉和分享生活瞬间的方法。智能手机的出现,尤其是iPhone,在这一转变中发挥了关键作用。iPhone以其先进的相机技术和用户友好的编辑功能而闻名,已成为业余和经验丰富的摄影师的首选。iOS17的推出标志着这一旅程中的一个重要里程碑。Apple的最新更新带来了一套增强的照片编辑功能,为用户提供了一个更强大的工具包,将他们的日常快照变成视觉上引人入胜且艺术丰富的图像。这种技术的发展不仅简化了摄影过程,还为创意表达开辟了新的途径,使用户能够毫不费力地为他们的照片注入专业气息

算法在 58 画像平台建设中的应用 算法在 58 画像平台建设中的应用 May 09, 2024 am 09:01 AM

一、58画像平台建设背景首先和大家分享下58画像平台的建设背景。1.传统的画像平台传统的思路已经不够,建设用户画像平台依赖数据仓库建模能力,整合多业务线数据,构建准确的用户画像;还需要数据挖掘,理解用户行为、兴趣和需求,提供算法侧的能力;最后,还需要具备数据平台能力,高效存储、查询和共享用户画像数据,提供画像服务。业务自建画像平台和中台类型画像平台主要区别在于,业务自建画像平台服务单条业务线,按需定制;中台平台服务多条业务线,建模复杂,提供更为通用的能力。2.58中台画像建设的背景58的用户画像

实时加SOTA一飞冲天!FastOcc:推理更快、部署友好Occ算法来啦! 实时加SOTA一飞冲天!FastOcc:推理更快、部署友好Occ算法来啦! Mar 14, 2024 pm 11:50 PM

写在前面&笔者的个人理解在自动驾驶系统当中,感知任务是整个自驾系统中至关重要的组成部分。感知任务的主要目标是使自动驾驶车辆能够理解和感知周围的环境元素,如行驶在路上的车辆、路旁的行人、行驶过程中遇到的障碍物、路上的交通标志等,从而帮助下游模块做出正确合理的决策和行为。在一辆具备自动驾驶功能的车辆中,通常会配备不同类型的信息采集传感器,如环视相机传感器、激光雷达传感器以及毫米波雷达传感器等等,从而确保自动驾驶车辆能够准确感知和理解周围环境要素,使自动驾驶车辆在自主行驶的过程中能够做出正确的决断。目

See all articles