IDC预测:2022年全球人工智能支出将达4500亿美元
国际数据公司(IDC)的一份新报告预测,2022年全球人工智能解决方案的市场价值将接近4500亿美元,并将在未来五年持续增长。
根据IDC的《全球半年度人工智能跟踪报告》,2021年全球人工智能软件、硬件和服务的收入总计3833亿美元,比2020年增长20.7%。
在整个人工智能(AI)市场中,最大的领域是人工智能软件,包括人工智能应用程序交付和部署、人工智能应用程序、人工智能系统基础设施软件、人工智能平台等4个领域。2021年,这些类别的市值合计超过3400亿美元,其中人工智能应用占了近一半。AI平台的年增长率为36.6%。
IDC表示,人工智能应用市场的竞争仍然非常激烈,近300家公司在该领域展开竞争。在人工智能应用类别中,最大的玩家是客户关系管理应用(CRM)和人工智能企业资源管理应用(ERM),各占类别总数的16%左右。
以人工智能为中心的应用,IDC将其定义为人工智能技术对其功能至关重要的应用,占据了2021年12.9%的市场份额,同比增长29.3%。剩下的市场被AI非中心应用程序占据,或者AI技术是应用程序的某些工作流程的一部分,但如果移除这些技术,应用程序仍然可以运行。
另一个出现增长的领域是人工智能服务市场,其总值同比增长22.4%。IDC报告称,由于客户对生产级AI解决方案的需求,AI IT服务类别同比增长21.9%,至188亿美元。此外,对AI治理、业务流程和人才战略解决方案的需求增加,使AI业务服务类别以每年24.2%的速度增长。
人工智能市场中最小但增长最快的部分是人工智能硬件。IDC表示,人工智能硬件的增长是由构建专门的人工智能系统所推动的,该系统能够满足人工智能模型和数据集不断增长的计算和存储需求。AI服务器和AI存储分别增长了39.1%和32.9%,服务器采购达到156亿美元。
IDC数据与分析副总裁Rasmus Andsbjerg表示:“在所有行业和功能中,终端用户组织都发现了人工智能技术的好处,因为日益强大的人工智能解决方案正在实现更好的决策和更高的生产率。现实情况是,人工智能为我们目前面临的一切问题提供了解决方案。人工智能可以成为快速数字转型之旅的一个来源,在通货膨胀率惊人的情况下能够节省成本,在劳动力短缺的情况下支持自动化工作。”
以上是IDC预测:2022年全球人工智能支出将达4500亿美元的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在
