借助 autoML 技术更容易地开发AI
德国弗莱堡大学机器学习实验室负责人Frank Hutter 说,所有这些人类决策的结果是,复杂的模型最终是被"凭直觉设计",而不是系统地设计的。
一个名为自动机器学习(autoML)的不断发展的领域旨在消除这种猜测。其想法是让算法接管研究人员目前在设计模型时必须做出的决定。最终,这些技术可以使机器学习变得更容易获得。
尽管自动机器学习已经存在了近十年,但研究人员仍在努力改进它。近日,在巴尔的摩举行的一次新会议,展示了为提高autoML的准确性和简化其性能而做出的努力。
人们对 autoML 简化机器学习的潜力产生了浓厚的兴趣。亚马逊和谷歌等公司已经提供了利用 autoML 技术的低代码机器学习工具。如果这些技术变得更有效,它可以加速研究并让更多人使用机器学习。
这样做的目的是为了让人们可以选择他们想问的问题,将 autoML 工具指向它,并获得他们想要的结果。
这一愿景是"计算机科学的圣杯",怀俄明大学的计算机科学助理教授兼会议组织者Lars Kotthoff说,"你指定了问题,计算机就知道如何解决它,这就是你要做的一切。"但首先,研究人员必须弄清楚如何使这些技术更省时、更节能。
自动机器学习可以解决什么?
乍一看,autoML 的概念似乎是多余的——毕竟,机器学习已经是关于自动化从数据中获取洞察力的过程。但由于 autoML 算法在底层机器学习模型之上的抽象级别上运行,仅依赖这些模型的输出作为指导,因此它们可以节省时间和计算量。
研究人员可以将 autoML 技术应用于预先训练的模型以获得新的见解,而不会浪费计算能力来重复现有的研究。
例如,美国富士通研究所的研究科学家 Mehdi Bahrami 和他的合著者介绍了最近的工作,关于如何将BERT-sort算法与不同的预训练模型一起使用以适应新的目的。
BERT-sort 是一种算法,可以在对数据集进行训练时找出所谓的"语义顺序"。例如,给定的电影评论数据,它知道"伟大的"电影的排名要高于"好"和"坏"的电影。
借助 autoML 技术,还可以将学习到的语义顺序推广到对癌症诊断甚至外语文本进行分类,从而减少时间和计算量。
"BERT 需要数月的计算,而且非常昂贵,比如要花费 100 万美元来生成该模型并重复这些过程。"Bahrami 说,"因此,如果每个人都想做同样的事情,那就很昂贵——它不节能,对世界的可持续发展不利。"
尽管该领域显示出希望,但研究人员仍在寻找使 autoML 技术的计算效率更高的方法。例如,通过像神经架构搜索(NAS)这样的方法,构建和测试许多不同的模型以找到最合适的模型,完成所有这些迭代所需的能量可能很大。
自动机器学习还可以应用于不涉及神经网络的机器学习算法,例如创建随机决策森林或支持向量机来对数据进行分类。这些领域的研究正在持续进行中,已经有许多编码库可供想要将 autoML 技术整合到他们的项目中的人们使用。
Hutter表示,下一步是使用autoML量化不确定性并解决算法中的可信度和公平性问题。在这个愿景中,关于可信赖性和公平性的标准将类似于任何其他机器学习的约束条件,例如准确性。而autoML可以在这些算法发布之前捕获并自动纠正这些算法中发现的偏差。
神经架构搜索的持续进展
但是对于像深度学习这类应用,autoML还有很长的路要走。用于训练深度学习模型的数据,如图像、文档和录制的语音,通常是密集且复杂的。它需要巨大的计算能力来处理。除了在财力雄厚的大企业工作的研究人员之外,训练这些模型的成本和时间可能会让任何人望而却步。
该会议上的一项竞赛要求是参与者开发用于神经架构搜索的节能替代算法。这是一个相当大的挑战,因为这种技术具有"臭名昭著"的计算需求。它会自动循环遍历无数的深度学习模型,以帮助研究人员为他们的应用选择合适的模型,但该过程可能需要数月时间,成本超过一百万美元。
这些被称为零成本神经架构搜索代理的替代算法的目标是,通过大幅削减其对计算的需求,使神经架构搜索更容易获得、更环保。其结果只需要几秒钟就能运行,而不是几个月。目前,这些技术仍处于发展的早期阶段并且通常不可靠,但机器学习研究人员预测,它们有可能使模型选择过程更加高效。
以上是借助 autoML 技术更容易地开发AI的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
