人工智能对太阳能和风能的好处存在吗?
太阳能和风力发电正在蓬勃发展,但世界向可再生电力的过渡仍然太慢,无法快速实现气候目标。由于许多原因,在全球范围内利用风能和太阳能说起来容易做起来难。一是风力涡轮机和太阳能电池板是复杂、挑剔的工程系统,很容易发生故障。频繁的故障会降低电力输出,并使风电场和太阳能发电场的运营和维护成本高昂。
英格兰赫尔大学的数据科学家Joyjit Chatterjee表示,利用人工智能预测电力生产和组件故障的能力,可以使可再生电力更经济、更可靠,以加快广泛采用。然而,它并没有像在电子商务、制造业和医疗保健等许多其他领域那样被应用于这一领域。“人工智能可能会对气候变化和可持续性产生真正的影响,”他表示,“但与可再生能源领域相关的工作很少。”
因此,Chatterjee和他的同事、赫尔大学计算机科学研究主任Nina Dethlefs在最近的人工智能会议学习表征国际会议(International Conference on Learning Representations,ICLR)上召集了人工智能和可再生能源领域的专家。在6月10日发表在《数据科学杂志模式》上的一篇观点论文中,两人介绍了该会议的关键信息,概述了限制人工智能对可再生能源影响的障碍,以及如何使用成熟和新兴的人工智能方法克服这些障碍。
公用事业规模农场上的风力涡轮机和太阳能电池板装有传感器,操作员可以远程监控其发电和健康状况。这些传感器包括振动传感器、温度传感器、加速计和速度传感器。它们生成的数据提供了一个机会。根据历史发电量和故障数据训练的人工智能模型可以预测风力涡轮机齿轮箱或太阳能电池板逆变器中的意外故障,帮助操作员为停电做好准备并计划日常维护。
Chatterjee说,强化学习是一种令人兴奋的新机器学习技术,可以帮助改进这些模型。在强化学习中,算法在训练过程中与世界互动,获得奖励或惩罚决策的持续反馈,以学习如何实现某些目标。这种真实的互动可能来自人类。
“人工智能的一个危险是它并不完美,”Chatterjee说,“我们可以让人参与,不断帮助优化人工智能模型。人们通常担心人工智能会取代人的部分并做出决策。但人类需要与人工智能模型合作,共同优化模型以获得决策支持。”
他补充说,对自然语言生成(将数据转换为人类可读文本的过程)的关注将增强对人工智能的信任并增加其使用。由于缺乏透明度,行业工程师不愿意使用研究人员创建的少数故障预测模型。为操作员提供简短的自然语言信息将促进交互。
对于人工智能社区来说,鉴于风能和太阳能行业的商业敏感性,创建更好模型的一大障碍是公开可用的数据数量十分有限。Chatterjee说,除了行业不愿意公开共享数据外,缺乏标准也会影响人工智能模型的开发。“世界不同地区的风电场运营商管理数据的方式不同,因此对研究人员来说,共同使用资源确实具有挑战性。”
为了解决这个问题,人工智能社区可以利用一种称为转移学习的机器学习技术。通过识别数据中各种特征中的隐藏模式,该方法允许数据科学家将从解决一个机器学习任务中获得的知识转移到另一个相关任务,从而在数据有限时更容易训练神经网络和开发深度学习模型。Chatterjee说:“这将有助于你在仅针对涡轮机X的模型的基础上,甚至在没有历史数据的情况下,开发涡轮机Y的模型。”
不过,神经网络并不一定总是答案。由于这些深度学习模型传统上适用于从图像和文本中学习,因此它们已变得流行。问题是,神经网络经常会失败。此外,训练这些大规模、计算复杂的模型需要消耗大量能源的高性能计算基础设施,而这在发展中国家是很难实现的。
至少对可再生能源领域来说,有时简单一点可能没问题。人工智能社区应该首先关注使用更简单的机器学习模型,如决策树,看看它们是否有效。Chatterjee说:“通常并非每个问题都需要神经网络。为什么要通过训练和开发计算更复杂的神经网络来增加碳排放量?未来的研究需要在更少的资源消耗和碳密集型模型上进行。”
以上是人工智能对太阳能和风能的好处存在吗?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
