Python中怎么使用Jieba进行词频统计与关键词提取
1 词频统计
1.1 简单词频统计
1.导入jieba
库并定义文本
import jieba text = "Python是一种高级编程语言,广泛应用于人工智能、数据分析、Web开发等领域。"
2.对文本进行分词
words = jieba.cut(text)
这一步会将文本分成若干个词语,并返回一个生成器对象words
,可以使用for
循环遍历所有的词语。
3. 统计词频
word_count = {} for word in words: if len(word) > 1: word_count[word] = word_count.get(word, 0) + 1
这一步通过遍历所有的词语,统计每个词语出现的次数,并保存到一个字典word_count
中。在统计词频时,可以通过去除停用词等方式进行优化,这里只是简单地过滤了长度小于2的词语。
4. 结果输出
for word, count in word_count.items(): print(word, count)
1.2 加入停用词
为了更准确地统计词频,我们可以在词频统计中加入停用词,以去除一些常见但无实际意义的词语。具体步骤如下:
定义停用词列表
import jieba # 停用词列表 stopwords = ['是', '一种', '等']
对文本进行分词,并过滤停用词
text = "Python是一种高级编程语言,广泛应用于人工智能、数据分析、Web开发等领域。" words = jieba.cut(text) words_filtered = [word for word in words if word not in stopwords and len(word) > 1]
统计词频并输出结果
word_count = {} for word in words_filtered: word_count[word] = word_count.get(word, 0) + 1 for word, count in word_count.items(): print(word, count)
加入停用词后,输出的结果是:
可以看到,被停用的一种
这个词并没有显示出来。
2 关键词提取
2.1 关键词提取原理
与对词语进行单纯计数的词频统计不同,jieba提取关键字的原理是基于TF-IDF(Term Frequency-Inverse Document Frequency)算法。TF-IDF算法是一种常用的文本特征提取方法,可以衡量一个词语在文本中的重要程度。
具体来说,TF-IDF算法包含两个部分:
Term Frequency(词频):指一个词在文本中出现的次数,通常用一个简单的统计值表示,例如词频、二元词频等。词频反映了一个词在文本中的重要程度,但是忽略了这个词在整个语料库中的普遍程度。
Inverse Document Frequency(逆文档频率):指一个词在所有文档中出现的频率的倒数,用于衡量一个词的普遍程度。逆文档频率越大,表示一个词越普遍,重要程度越低;逆文档频率越小,表示一个词越独特,重要程度越高。
TF-IDF算法通过综合考虑词频和逆文档频率,计算出每个词在文本中的重要程度,从而提取关键字。在jieba中,关键字提取的具体实现包括以下步骤:
对文本进行分词,得到分词结果。
统计每个词在文本中出现的次数,计算出词频。
统计每个词在所有文档中出现的次数,计算出逆文档频率。
综合考虑词频和逆文档频率,计算出每个词在文本中的TF-IDF值。
对TF-IDF值进行排序,选取得分最高的若干个词作为关键字。
举个例子:
F(Term Frequency)指的是某个单词在一篇文档中出现的频率。计算公式如下:
T F = ( 单词在文档中出现的次数 ) / ( 文档中的总单词数 )
例如,在一篇包含100个单词的文档中,某个单词出现了10次,则该单词的TF为
10 / 100 = 0.1
IDF(Inverse Document Frequency)指的是在文档集合中出现某个单词的文档数的倒数。计算公式如下:
I D F = l o g ( 文档集合中的文档总数 / 包含该单词的文档数 )
例如,在一个包含1000篇文档的文档集合中,某个单词在100篇文档中出现过,则该单词的IDF为 l o g ( 1000 / 100 ) = 1.0
TFIDF是将TF和IDF相乘得到的结果,计算公式如下:
T F I D F = T F ∗ I D F
需要注意的是,TF-IDF算法只考虑了词语在文本中的出现情况,而忽略了词语之间的关联性。因此,在一些特定的应用场景中,需要使用其他的文本特征提取方法,例如词向量、主题模型等。
2.2 关键词提取代码
import jieba.analyse # 待提取关键字的文本 text = "Python是一种高级编程语言,广泛应用于人工智能、数据分析、Web开发等领域。" # 使用jieba提取关键字 keywords = jieba.analyse.extract_tags(text, topK=5, withWeight=True) # 输出关键字和对应的权重 for keyword, weight in keywords: print(keyword, weight)
在这个示例中,我们首先导入了jieba.analyse
模块,然后定义了一个待提取关键字的文本text
。接着,我们使用jieba.analyse.extract_tags()
函数提取关键字,其中topK
参数表示需要提取的关键字个数,withWeight
参数表示是否返回关键字的权重值。最后,我们遍历关键字列表,输出每个关键字和对应的权重值。
这段函数的输出结果为:
可以看到,jieba根据TF-IDF算法提取出了输入文本中的若干个关键字,并返回了每个关键字的权重值。
以上是Python中怎么使用Jieba进行词频统计与关键词提取的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上高效训练PyTorch模型,需要分步骤进行,本文将提供详细指南。一、环境准备:Python及依赖项安装:CentOS系统通常预装Python,但版本可能较旧。建议使用yum或dnf安装Python3并升级pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。CUDA与cuDNN(GPU加速):如果使用NVIDIAGPU,需安装CUDATool

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

在CentOS下选择PyTorch版本时,需要考虑以下几个关键因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU并且希望利用GPU加速,需要选择支持相应CUDA版本的PyTorch。可以通过运行nvidia-smi命令查看你的显卡支持的CUDA版本。CPU版本:如果没有GPU或不想使用GPU,可以选择CPU版本的PyTorch。2.Python版本PyTorch

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

CentOS 安装 Nginx 需要遵循以下步骤:安装依赖包,如开发工具、pcre-devel 和 openssl-devel。下载 Nginx 源码包,解压后编译安装,并指定安装路径为 /usr/local/nginx。创建 Nginx 用户和用户组,并设置权限。修改配置文件 nginx.conf,配置监听端口和域名/IP 地址。启动 Nginx 服务。需要注意常见的错误,如依赖问题、端口冲突和配置文件错误。性能优化需要根据具体情况调整,如开启缓存和调整 worker 进程数量。
