目录
多模态决策大模型DB1
任务表现
当前决策大模型的限制与未来方向
首页 科技周边 人工智能 上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

May 04, 2023 am 09:58 AM
人工智能 模型

近日,上海数字大脑研究院(以下简称“数研院”)推出首个数字大脑多模态决策大模型(简称DB1),填补了国内在此方面的空白,进一步验证了预训练模型在文本、图- 文、强化学习决策、运筹优化决策方面应用的潜力。目前,DB1代码我们已开源在Github,项目链接:https://github.com/Shanghai-Digital-Brain-Laboratory/BDM-DB1。

此前,数研院提出MADT(https://arxiv.org/abs/2112.02845)/MAT(https://arxiv.org/abs/2205.14953)等多智能体模型,在一些离线大模型通过序列建模,使用Transformer 模型在一些单/ 多智能体任务上取得了显着效果,并持续在该方向上进行研究探索。

过去几年,随着预训练大模型的兴起,学术界与产业界在预训练模型的参数量与多模态任务上不断取得新的进展,大规模预训练模型通过对海量数据和知识的深度建模,被认为是通往通用人工智能的重要路径之一。专注决策智能研究的数研院创新性地尝试将预训练模型的成功复制到决策任务上,并且取得了突破。

多模态决策大模型DB1

此前,DeepMind 推出Gato,将单智能体决策任务、多轮对话和图片- 文本生成任务统一到一个基于Transformer 的自回归问题上,并在604 个不同任务上取得了良好表现,显示出通过序列预测能够解决一些简单的强化学习决策问题,这在侧面验证了数研院在决策大模型研究方向的正确性。

此次,数研院推出的DB1,主要对Gato 进行了复现与验证,并从网络结构与参数量、任务类型与任务数量两方面尝试进行了改进:

  • 参数量与网络结构:DB1 参数量达12.1 亿。在参数量上尽量做到与 Gato 接近。整体来说,数研院使用了与Gato 类似的结构(相同的Decoder Block 数量、隐层大小等),但在FeedForwardNetwork 中,由于GeGLU 激活函数会额外引入1/3 的参数量,数研院为了接近Gato 的参数量,使用4 * n_embed 维的隐层状态经过GeGLU 激活函数后变成2 * n_embed 维的特征。在其他方面,我们与 Gato 的实现一样在输入输出编码端共享了 embedding 参数。不同于 Gato,在 layer normalization 的选择上我们采用了 PostNorm 的方案,同时我们在 Attention 上使用混合精度计算,提高了数值稳定性。
  • 任务类型与任务数量:DB1 的实验任务数量达870,较Gato 提升了44.04%,较Gato 在>=50%专家性能上提升2.23%。具体任务类型上,DB1 大部分继承了 Gato 的决策、图像和文本类任务,各类任务数量基本维持一致。但在决策类任务方面,DB1 另外引入了200 余个现实场景任务,即100 和200 节点规模的旅行商问题(TSP,此类任务在所有中国主要城市随机选择100-200 个地理位置作为结点表征)求解。

可以看到的是,DB1 整体表现已经与Gato 达到同一水平,并已经开始向更加贴近实际业务的需求领域体进化,很好地求解了NP-hard 的TSP 问题,而此前Gato 并未在此方向探索。

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策DB1 (右) 与GATO (左)指标对比

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

DB1 在强化学习模拟环境上的多任务性能分布

相较于传统的决策算法,DB1 在跨任务决策能力和快速迁移能力上都有不错的表现。从跨任务决策能力和参数量来说,实现了从单一复杂任务的千万 - 亿级别参数量到多个复杂任务的十亿级别参数的跨越,并持续增长,并且具备解决复杂商业环境中的实际问题的充分能力。从迁移能力来说,DB1 完成了从智能预测到智能决策、从单智能体到多智能体的跨越,弥补传统方法在跨任务迁移方面的不足,使得在企业内部建立大模型成为可能。

不可否认的是,DB1 在开发过程也遇到了很多难点,数研院进行了大量尝试,可为业内在大规模模型训练及多任务训练数据存储方面提供一些标准解决路径。由于模型参数到达 10 亿参数规模且任务规模庞大,同时需要在超过 100T(300B Tokens)的专家数据上进行训练,普通的深度强化学习训练框架已无法满足在该种情况下的快速训练。为此,一方面,针对分布式训练,数研院充分考虑强化学习、运筹优化和大模型训练的计算结构,在单机多卡和多机多卡的环境下,极致利用硬件资源,巧妙设计模块间的通讯机制,尽可能提升模型的训练效率,将 870 个任务的训练时间缩短到了一周。另一方面,针对分布式随机采样,训练过程所需数据索引、存储、加载以及预处理也成为相应瓶颈,数研院在加载数据集时采用了延迟加载模式,以解决内存限制问题并尽可能充分利用可用内存。此外,在对加载数据进行预处理后,会将处理过的数据缓存至硬盘中,便于此后可直接加载预处理完成的数据,缩减重复预处理带来的时间和资源成本。

目前,国际国内头部企业与研究机构如 OpenAI、Google、Meta、华为、百度和达摩院等都已经进行了多模态大模型相关的研究并且有了一定商业化尝试,包括在自身产品中应用或者提供模型 API 和相关行业解决方案。相比之下,数研院更关注决策问题,同时支持游戏 AI 决策任务、运筹优化 TSP 求解任务、机器人决策控制任务、黑盒优化求解任务与多轮对话任务上进行应用尝试。

任务表现

运筹优化:TSP 问题求解

以中国部分城市为节点的 TSP 问题

强化学习任务视频演示

DB1 模型在完成 870 个不同决策任务的离线学习后,其评估结果显示有 76.67% 的任务达到或超过 50% 的专家水平。以下是一些任务的效果展示。

  • 电子游戏场景:DB1 可以接收 2D/3D 图像输入,并且很好地完成类如 Atari,Procgen 在内的 2D 像素游戏,同时对于 DMLab 这种与真实世界较为相似的 3D 图像输入任务,DB1 也表现出了良好的性能。

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

Atari Breakout

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策


DMLab  Explore Object Locations

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

Procgen DogBall

  • 连续控制场景:在机器人领域的连续控制任务上,DB1 也能够建模连续动作的策略输出,并且良好地完成仿真任务上。

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

Metaworld PlateSlide

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策

ModularRL Cheetah

文本 - 图像任务

  • 文本生成:给出一段文字提示,生成长文本描述
  • 输入提示:digital Brain Laboratory is a shanghai based
  • 生成结果:digital Brain Laboratory is a shanghai based company,我们正在寻找高技能和经验丰富的人才加入我们在中国上海的团队。
    我们是一个数字大脑实验室,我们正在寻找高技能和经验丰富的人才加入我们在中国上海的团队。
    这是一个为一家正在经历快速增长阶段的知名且成长中的公司工作并对市场产生影响的机会。
    这是一个全职、永久职位。
    我们正在寻找一位技术精湛、积极进取、经验丰富的软件工程师,能够在竞争激烈的环境中领导 5-10 人的团队
  • 图像描述生成:给定一张图片生成对应文本描述

上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策


当前决策大模型的限制与未来方向

虽然当前多模态决策预训练模型DB1取得了一定的效果,但仍存在一定的限制,如:跨域任务采样权重敏感、跨域知识迁移困难、长序列建模困难、专家数据强依赖等。虽然存在群体挑战,但目前阶段看来,多模态决策大模型是实现决策智能体从游戏走向更广泛的场景,从虚拟走向现实,在现实开放动态环境中进行自主与感觉决策,最终实现更加通用人工智能的关键探索方向之一。未来,数研院将持续迭代数字神经决策大模型,通过更大的参数量,更有效的序列表征,接入和支持更多任务,结合离线/线训练与定制,实现跨域、跨模态、跨任务的知识泛化与迁移最终,在现实应用场景下提供更通用、更高效、更美观的Decision智能决策解决方案。

以上是上海数字大脑研究院发布国内首个多模态决策大模型DB1,可实现超复杂问题快速决策的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

Yolov10:详解、部署、应用一站式齐全! Yolov10:详解、部署、应用一站式齐全! Jun 07, 2024 pm 12:05 PM

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显着进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显着的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles