用Python绘制超酷的gif动图,惊艳了所有人
在之前的一篇文章当中,小编当时分享了如何用Python
当中的gif
模块来制作gif
格式的图表,
厉害了,用Python绘制动态可视化图表,并保存成gif格式今天小编再给大家来介绍一种制作gif
格式图表的新方法,调用的是matplotlib
的相关模块,其中的步骤与方法也是相当地简单易懂。
下载和导入数据库
我们这次用到的数据集是bokeh
模块自带的数据集,通过下面这一行代码直接就可以下载
import bokeh bokeh.sampledata.download()
然后导入后面要用到的数据集,我们挑选的是指定国家的1950年至今不同年龄阶段的人口所占比重的数据
from bokeh.sampledata.population import data import numpy as np data = filter_loc('United States of America') data.head()
output
先绘制若干张静态的图表
我们可以先绘制若干张静态的图表,然后将这几张图表合成一张gif
格式的动图即可,代码如下
import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patheffects as fx # 绘制图表的函数 def make_plot(year): # 根据年份来筛选出数据 df = data[data.Year == year] # 制作图表 fig, (ax1, ax2) = plt.subplots(1, 2, sharey = True) ax1.invert_xaxis() fig.subplots_adjust(wspace = 0) ax1.barh(df[df.Sex == 'Male'].AgeGrp, df[df.Sex == 'Male'].percent, label = 'Male') ax2.barh(df[df.Sex == 'Female'].AgeGrp, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1') country = df.Location.iloc[0] if country == 'United States of America': country == 'US' fig.suptitle(f'......') fig.supxlabel('......') fig.legend(bbox_to_anchor = (0.9, 0.88), loc = 'upper right') ax1.set_ylabel('Age Groups') return fig
我们自定义了一个绘制图表的函数,其中的参数是年份,逻辑很简单,我们是想根据年份来筛选出数据,然后根据筛选出的数据来绘制图表,每一年的图表不尽相同
years = [i for i in set(data.Year) if i < 2022] years.sort() for year in years: fig = make_plot(year) fig.savefig(f'{year}.jpeg',bbox_inches = 'tight')
output
这样我们就生成了若干张静态的图表,然后集合成gif
格式的图表几个,代码如下
import matplotlib.animation as animation fig, ax = plt.subplots() ims = [] for year in years: im = ax.imshow(plt.imread(f'{year}.jpeg'), animated = True) ims.append([im]) ani = animation.ArtistAnimation(fig, ims, interval=600) ani.save('us_population.gif')
output
还有另外一种思路
可能看到这儿,有人会觉得上面提到的方法稍显麻烦,毕竟我们需要先生成数十张静态的图表,要是电脑的磁盘空间有点紧张的话,或者还没有这样的一个地方来存放这数十张的图表。于是乎就会疑问道,是不是可以一步到位的来。当然也是可以的,例如我们打算绘制1950年到2020年不同年龄阶段的人口比例分布图,首先第一步在于我们先要绘制1950年,也就是起始年,该年不同年龄阶段的人口比例分布图,代码如下
fig, (ax1, ax2) = plt.subplots(1, 2, sharey = True) df = data[data.Year == 1955] y_pos = [i for i in range(len(df[df.Sex == 'Male']))] male = ax1.barh(y_pos, df[df.Sex == 'Male'].percent, label = 'Male', tick_label = df[df.Sex == 'Male'].AgeGrp) female = ax2.barh(y_pos, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1', tick_label = df[df.Sex == 'Male'].AgeGrp) ax1.invert_xaxis() fig.suptitle('.......') fig.supxlabel('....... (%)') fig.legend(bbox_to_anchor = (0.9, 0.88), loc = 'upper right') ax1.set_ylabel('Age Groups')
output
然后我们自定义一个绘制图表的函数,其中参数为年份,目的在于通过年份来筛选出相对应的数据并且绘制出相对应的图表
def run(year): # 通过年份来筛选出数据 df = data[data.Year == year] # 针对不同地性别来绘制 total_pop = df.Value.sum() df['percent'] = df.Value / total_pop * 100 male.remove() y_pos = [i for i in range(len(df[df.Sex == 'Male']))] male.patches = ax1.barh(y_pos, df[df.Sex == 'Male'].percent, label = 'Male', color = 'C0', tick_label = df[df.Sex == 'Male'].AgeGrp) female.remove() female.patches = ax2.barh(y_pos, df[df.Sex == 'Female'].percent, label = 'Female', color = 'C1', tick_label = df[df.Sex == 'Female'].AgeGrp) text.set_text(year) return male#, female
然后我们调用animation.FuncAnimation()
方法,
ani = animation.FuncAnimation(fig, run, years, blit = True, repeat = True, interval = 600) ani.save('文件名.gif')
output
这样就可以一步到位生成gif
格式的图表,避免生成数十张繁多地静态图片了。
将若干张<span style="color: #2b2b2b;">gif</span>
动图放置在一张大图当中
最后我们可以将若干张gif
动图放置在一张大的图表当中,代码如下
import matplotlib.animation as animation # 创建一个新的画布 fig, (ax, ax2, ax3) = plt.subplots(1, 3, figsize = (10, 3)) ims = [] for year in years: im = ax.imshow(plt.imread(f'文件1{year}.jpeg'), animated = True) im2 = ax2.imshow(plt.imread(f'文件2{year}.jpeg'), animated = True) im3 = ax3.imshow(plt.imread(f'文件3{year}.jpeg'), animated = True) ims.append([im, im2, im3]) ani = animation.ArtistAnimation(fig, ims, interval=600) ani.save('comparison.gif')
output
以上是用Python绘制超酷的gif动图,惊艳了所有人的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

用大多数文本编辑器即可打开XML文件;若需更直观的树状展示,可使用 XML 编辑器,如 Oxygen XML Editor 或 XMLSpy;在程序中处理 XML 数据则需使用编程语言(如 Python)与 XML 库(如 xml.etree.ElementTree)来解析。

无法找到一款将 XML 直接转换为 PDF 的应用程序,因为它们是两种根本不同的格式。XML 用于存储数据,而 PDF 用于显示文档。要完成转换,可以使用编程语言和库,例如 Python 和 ReportLab,来解析 XML 数据并生成 PDF 文档。

手机XML转PDF的速度取决于以下因素:XML结构的复杂性手机硬件配置转换方法(库、算法)代码质量优化手段(选择高效库、优化算法、缓存数据、利用多线程)总体而言,没有绝对的答案,需要根据具体情况进行优化。

对于小型XML文件,可直接用文本编辑器替换注释内容;对于大型文件,建议借助XML解析器进行修改,确保效率和准确性。删除XML注释时需谨慎,保留注释通常有助于代码理解和维护。进阶技巧中提供了使用XML解析器修改注释的Python示例代码,但具体实现需根据使用的XML库进行调整。修改XML文件时注意编码问题,建议使用UTF-8编码并指定编码格式。

XML格式化工具可以将代码按照规则排版,提高可读性和理解性。选择工具时,要注意自定义能力、对特殊情况的处理、性能和易用性。常用的工具类型包括在线工具、IDE插件和命令行工具。

没有简单、直接的免费手机端XML转PDF工具。需要的数据可视化过程涉及复杂的数据理解和渲染,市面上所谓的“免费”工具大多体验较差。推荐使用电脑端的工具或借助云服务,或自行开发App以获得更靠谱的转换效果。

在手机上高质量地将XML转换成PDF需要:使用无服务器计算平台在云端解析XML并生成PDF。选择高效的XML解析器和PDF生成库。正确处理错误。充分利用云端计算能力,避免在手机上进行繁重任务。根据需求调整复杂度,包括处理复杂的XML结构、生成多页PDF和添加图片。打印日志信息以帮助调试。优化性能,选择高效的解析器和PDF库,并可能使用异步编程或预处理XML数据。确保良好的代码质量和可维护性。

不可能直接在手机上用单一应用完成 XML 到 PDF 的转换。需要使用云端服务,通过两步走的方式实现:1. 在云端转换 XML 为 PDF,2. 在手机端访问或下载转换后的 PDF 文件。
