一行文本,生成3D动态场景:Meta这个「一步到位」模型有点厉害
仅输入一行文本,就能生成 3D 动态场景?
没错,已经有研究者做到了。可以看出来,目前的生成效果还处于初级阶段,只能生成一些简单的对象。不过这种「一步到位」的方法仍然引起了大量研究者的关注:
在最近的一篇论文中,来自 Meta 的研究者首次提出了可以从文本描述中生成三维动态场景的方法 MAV3D (Make-A-Video3D)。
- 论文链接:https://arxiv.org/abs/2301.11280
- 项目链接:https://make-a-video3d.github.io/
具体而言,该方法运用 4D 动态神经辐射场(NeRF),通过查询基于文本到视频(T2V)扩散的模型,优化场景外观、密度和运动的一致性。任意机位或角度都可以观看到提供的文本生成的动态视频输出,并可以合成到任何 3D 环境中。
MAV3D 不需要任何 3D 或 4D 数据,T2V 模型只对文本图像对和未标记的视频进行训练。
让我们看一下 MAV3D 从文本生成 4D 动态场景的效果:
此外,它也能从图像直接到 4D,效果如下:
研究者通过全面的定量和定性实验证明了该方法的有效性,先前建立的内部 baseline 也得到了改进。据悉,这是第一个根据文本描述生成 3D 动态场景的方法。
方法
该研究的目标在于开发一项能从自然语言描述中生成动态 3D 场景表征的方法。这极具挑战性,因为既没有文本或 3D 对,也没有用于训练的动态 3D 场景数据。因此,研究者选择依靠预训练的文本到视频(T2V)的扩散模型作为场景先验,该模型已经学会了通过对大规模图像、文本和视频数据的训练来建模场景的真实外观和运动。
从更高层次来看,在给定一个文本 prompt p 的情况下,研究可以拟合一个 4D 表征,它模拟了在时空任意点上与 prompt 匹配的场景外观。没有配对训练数据,研究无法直接监督的输出;然而,给定一系列的相机姿势
就可以从
渲染出图像序列
并将它们堆叠成一个视频 V。然后,将文本 prompt p 和视频 V 传递给冻结和预训练的 T2V 扩散模型,由该模型对视频的真实性和 prompt alignment 进行评分,并使用 SDS(得分蒸馏采样)来计算场景参数 θ 的更新方向。
上面的 pipeline 可以算作 DreamFusion 的扩展,为场景模型添加了一个时间维度,并使用 T2V 模型而不是文本到图像(T2I)模型进行监督。然而,要想实现高质量的文本到 4D 的生成还需要更多的创新:
- 第一,需要使用新的、允许灵活场景运动建模的 4D 表征;
- 第二,需要使用多级静态到动态优化方案来提高视频质量和提高模型收敛性,该方案利用几个 motion regularizer 来生成真实的运动;
- 第三,需要使用超分辨率微调(SRFT)提高模型的分辨率。
具体说明见下图:
实验
在实验中,研究者评估了 MAV3D 从文本描述生成动态场景的能力。首先,研究者评估了该方法在 Text-To-4D 任务上的有效性。据悉,MAV3D 是首个该任务的解决方案,因此研究开发了三种替代方法作为基线。其次,研究者评估了 T2V 和 Text-To-3D 子任务模型的简化版本,并将其与文献中现有的基线进行比较。第三,全面的消融研究证明了方法设计的合理性。第四,实验描述了将动态 NeRF 转换为动态网格的过程,最终将模型扩展到 Image-to-4D 任务。
指标
研究使用 CLIP R-Precision 来评估生成的视频,它可以测量文本和生成场景之间的一致性。报告的指标是从呈现的帧中检索输入 prompt 的准确性。研究者使用 CLIP 的 ViT-B/32 变体,并在不同的视图和时间步长中提取帧,并且还通过询问人工评分人员在两个生成的视频中的偏好来使用四个定性指标,分别是:(i) 视频质量;(ii) 忠实于文本 prompt;(iii) 活动量;(四) 运动的现实性。研究者评估了在文本 prompt 分割中使用的所有基线和消融。
图 1 和图 2 为示例。要想了解更详细的可视化效果,请参见 make-a-video3d.github.io。
结果
表 1 显示了与基线的比较(R - 精度和人类偏好)。人工测评以在特定环境下与该模型相比,赞成基线多数票的百分比形式呈现。
表 2 展示了消融实验的结果:
实时渲染
使用传统图形引擎的虚拟现实和游戏等应用程序需要标准的格式,如纹理网格。HexPlane 模型可以轻易转换为如下的动画网格。首先,使用 marching cube 算法从每个时刻 t 生成的不透明度场中提取一个简单网格,然后进行网格抽取(为了提高效率)并且去除小噪声连接组件。XATLAS 算法用于将网格顶点映射到纹理图集,纹理初始化使用以每个顶点为中心的小球体中平均的 HexPlane 颜色。最后,为了更好地匹配一些由 HexPlane 使用可微网格渲染的示例帧,纹理会被进一步优化。这将产生一个纹理网格集合,可以在任何现成的 3D 引擎中回放。
图像到 4D
图 6 和图 10 展示了该方法能够从给定的输入图像产生深度和运动,从而生成 4D 资产。
更多研究细节,可参考原论文。
以上是一行文本,生成3D动态场景:Meta这个「一步到位」模型有点厉害的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

DDREASE是一种用于从文件或块设备(如硬盘、SSD、RAM磁盘、CD、DVD和USB存储设备)恢复数据的工具。它将数据从一个块设备复制到另一个块设备,留下损坏的数据块,只移动好的数据块。ddreasue是一种强大的恢复工具,完全自动化,因为它在恢复操作期间不需要任何干扰。此外,由于有了ddasue地图文件,它可以随时停止和恢复。DDREASE的其他主要功能如下:它不会覆盖恢复的数据,但会在迭代恢复的情况下填补空白。但是,如果指示工具显式执行此操作,则可以将其截断。将数据从多个文件或块恢复到单

0.这篇文章干了啥?提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。下面一起来阅读一下这项工作~1.论文信息标题:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

谷歌力推的JAX在最近的基准测试中性能已经超过Pytorch和TensorFlow,7项指标排名第一。而且测试并不是在JAX性能表现最好的TPU上完成的。虽然现在在开发者中,Pytorch依然比Tensorflow更受欢迎。但未来,也许有更多的大模型会基于JAX平台进行训练和运行。模型最近,Keras团队为三个后端(TensorFlow、JAX、PyTorch)与原生PyTorch实现以及搭配TensorFlow的Keras2进行了基准测试。首先,他们为生成式和非生成式人工智能任务选择了一组主流

在iPhone上面临滞后,缓慢的移动数据连接?通常,手机上蜂窝互联网的强度取决于几个因素,例如区域、蜂窝网络类型、漫游类型等。您可以采取一些措施来获得更快、更可靠的蜂窝互联网连接。修复1–强制重启iPhone有时,强制重启设备只会重置许多内容,包括蜂窝网络连接。步骤1–只需按一次音量调高键并松开即可。接下来,按降低音量键并再次释放它。步骤2–该过程的下一部分是按住右侧的按钮。让iPhone完成重启。启用蜂窝数据并检查网络速度。再次检查修复2–更改数据模式虽然5G提供了更好的网络速度,但在信号较弱

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

这周,由OpenAI、微软、贝佐斯和英伟达投资的机器人公司FigureAI宣布获得接近7亿美元的融资,计划在未来一年内研发出可独立行走的人形机器人。而特斯拉的擎天柱也屡屡传出好消息。没人怀疑,今年会是人形机器人爆发的一年。一家位于加拿大的机器人公司SanctuaryAI最近发布了一款全新的人形机器人Phoenix。官方号称它能以和人类一样的速率自主完成很多工作。世界上第一台能以人类速度自主完成任务的机器人Pheonix可以轻轻地抓取、移动并优雅地将每个对象放置在它的左右两侧。它能够自主识别物体的

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,
