机器学习的应用范围有哪些?
机器学习的两大应用场景—回归与分类
回归(regression)和分类(classification)是两种最常见的机器学习问题类型,如下图所示。
回归问题通常用来预测一个值,其标签的值是连续的。例如,预测房价、未来的天气等任何连续性的走势、数值。比较常见的回归算法是线性回归(linear regression)算法以及深度学习中的神经网络等。
分类问题是将事物标记一个类别标签,结果为离散值,也就是类别中的一个选项,例如,判断一幅图片上的动物是一只猫还是一只狗。分类有二元分类和多元分类,每类的最终正确结果只有一个。分类是机器学习的经典应用领域,很多种机器学习算法都可以用于分类,包括最基础的逻辑回归算法、经典的决策树算法,以及深度学习中的神经网络等。还有从多元分类上衍生出来的多标签分类问题,典型应用如社交网站中上传照片时的自动标注人名功能,以及推荐系统——在网站或者App中为同一个用户推荐多种产品,或把某一种产品推荐给多个用户。
机器学习的其他应用场景
当然,除回归问题和分类问题之外,机器学习的应用场景还有很多。比如,无监督学习中最常见的聚类 (clustering)问题是在没有标签的情况下,把数据按照其特征的性质分成不同的簇(其实也就是数据分类);还有一种无监督学习是关联规则,通过它可以找到特征之间的影响关系。
又比如时间序列,指在内部结构随时间呈规律性变化的数据集,如趋势性数据、随季节变化的数据等。时间序列问题其实也就是和时间、周期紧密关联的回归问题。具体应用场景包括预测金融市场的波动,推断太阳活动、潮汐、天气乃至恒星的诞生、星系的形成,预测流行疾病传播过程等。
还有结构化输出。通常机器学习都是输出一个答案或者选项,而有时需要通过学习输出一个结构。什么意思呢?比如,在语音识别中,机器输出的是一个句子,句子是有标准结构的,不只是数字0~9这么简单(识别0~9是分类问题),这比普通的分类问题更进一步。具体应用场景包括语音识别——输出语法结构正确的句子、机器翻译——输出合乎规范的文章。
还有一部分机器学习问题的目标不是解决问题,而是令世界变得更加丰富多彩,因此AI也可以进行艺术家所做的工作,例如以下几种。Google的Dreamwork可以结合两种图片的风格进行艺术化的风格迁移。 生成式对抗网络GAN能造出以假乱真的图片。挖掘数字特征向量的潜隐空间,进行音乐、新闻、故事等创作。
我们可以把这种机器学习应用称为生成式学习。
还有些时候,机器学习的目标是做出决定,这时叫它们决策性问题。决策性问题本质上仍然是分类问题,因为每一个决策实际上还是在用最适合的行为对环境的某一个状态进行分类。比如,自动驾驶中的方向(左、中、右),以及围棋中的落点,仍然是19×19个类的其中之一。具体应用场景包括自动驾驶、智能体玩游戏、机器人下棋等。在很多决策性问题中,机器必须学习哪些决策是有效的、可以带来回报的,哪些是无效的、会带来负回报的,以及哪些是对长远目标有利的。因此,强化学习是这种情况下的常用技术。
总体来说,机器学习的诀窍在于要了解自己的问题,并针对自己的问题选择最佳的机器学习方法(算法),也就是找到哪一种技术最有可能适合这种情况。如果能把场景或任务和适宜的技术连接起来,就可以在遇到问题时心中有数,迅速定位一个解决方向。下图将一些常见的机器学习应用场景和机器学习模型进行了连接
以上是机器学习的应用范围有哪些?的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

在机器学习和数据科学领域,模型的可解释性一直是研究者和实践者关注的焦点。随着深度学习和集成方法等复杂模型的广泛应用,理解模型的决策过程变得尤为重要。可解释人工智能(ExplainableAI|XAI)通过提高模型的透明度,帮助建立对机器学习模型的信任和信心。提高模型的透明度可以通过多种复杂模型的广泛应用等方法来实现,以及用于解释模型的决策过程。这些方法包括特征重要性分析、模型预测区间估计、局部可解释性算法等。特征重要性分析可以通过评估模型对输入特征的影响程度来解释模型的决策过程。模型预测区间估计

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

译者|李睿审校|重楼人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。可解释性人工智能至关重要的几个原因信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

MetaFAIR联合哈佛优化大规模机器学习时产生的数据偏差,提供了新的研究框架。据所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个GPU。以LLaMA270B模型为例,其训练总共需要1,720,320个GPU小时。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。最近,许多机构在训练SOTA生成式AI模型时报告了训练过程中的不稳定情况,它们通常以损失尖峰的形式出现,比如谷歌的PaLM模型训练过程中出现了多达20次的损失尖峰。数值偏差是造成这种训练不准确性的根因,

01前景概要目前,难以在检测效率和检测结果之间取得适当的平衡。我们就研究出了一种用于高分辨率光学遥感图像中目标检测的增强YOLOv5算法,利用多层特征金字塔、多检测头策略和混合注意力模块来提高光学遥感图像的目标检测网络的效果。根据SIMD数据集,新算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在检测结果和速度之间实现了更好的平衡。02背景&动机随着远感技术的快速发展,高分辨率光学远感图像已被用于描述地球表面的许多物体,包括飞机、汽车、建筑物等。目标检测在远感图像的解释中

在C++中,机器学习算法的实施方式包括:线性回归:用于预测连续变量,步骤包括加载数据、计算权重和偏差、更新参数和预测。逻辑回归:用于预测离散变量,流程与线性回归类似,但使用sigmoid函数进行预测。支持向量机:一种强大的分类和回归算法,涉及计算支持向量和预测标签。

Go语言在机器学习领域的应用潜力巨大,其优势在于:并发性:支持并行编程,适合机器学习任务中的计算密集型操作。高效性:垃圾收集器和语言特性确保代码高效,即使处理大型数据集。易用性:语法简洁,学习和编写机器学习应用程序容易。
