目录
效果展示
方法概览
实验结果
首页 科技周边 人工智能 朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

May 08, 2023 pm 08:34 PM
框架 模型

据悉 GPT-4 将于本周发布,多模态将成为其一大亮点。当前的大语言模型正在成为理解各种模态的通用接口,能够根据不同模态信息来给出回复文本,但大语言模型生成的内容也仅仅局限于文本。另一方面,当前的扩散模型 DALL・E 2、Imagen、Stable Diffusion 等在视觉创作上掀起一场革命,但这些模型仅仅支持文到图的单一跨模态功能,离通用式生成模型还有一定距离。而多模态大模型将能够打通各种模态能力,实现任意模态之间转化,被认为是通用式生成模型的未来发展方向。

清华大学计算机系朱军教授带领的 TSAIL 团队近期公开的一篇论文《One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale》,率先发布了对多模态生成式模型的一些探索工作,实现了任意模态之间的相互转化。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。


论文链接:https://ml.cs.tsinghua.edu.cn/diffusion/unidiffuser.pdf

开源代码:https://github.com/thu-ml/unidiffuser

该论文提出了一个为多模态设计的概率建模框架 UniDiffuser,并采用该团队提出的基于 transformer 的网络架构 U-ViT,在开源的大规模图文数据集 LAION-5B 上训练了一个十亿参数量的模型,使得一个底层模型能够高质量地完成多种生成任务(图 1)。简单来讲,除了单向的文生图,还能实现图生文、图文联合生成、无条件图文生成、图文改写等多种功能,大幅提升文图内容的生产效率,也进一步提升了生成式模型的应用想象力。

该论文一作鲍凡目前博士在读,是此前 Analytic-DPM 的提出者,凭借在扩散模型方面的优秀工作荣获 ICLR 2022 的 outstanding paper award(目前唯一一篇大陆单位独立完成的获奖论文)。

此外,机器之心之前还报道过 TSAIL 团队提出的 DPM-Solver 快速算法,目前仍是扩散模型最快的生成算法。多模态大模型正是该团队在深度概率模型的算法和原理方面上长期深入积累的一个集中展示。该工作的合作者包括人民大学高瓴人工智能学院的李崇轩、北京智源研究院的曹越等。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

值得注意的是,该项目的论文和代码均已开源。

效果展示

如下的图 8 展示了 UniDiffuser 在图文联合生成的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下的图 9 展示了 UniDiffuser 在文到图上的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下的图 10 展示了 UniDiffuser 在图到文上的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下的图 11 展示了 UniDiffuser 在无条件图像生成上的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下的图 12 展示了 UniDiffuser 在图像改写上的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下的图 15 展示了 UniDiffuser 能够实现在图文两个模态之间的来回跳跃 :

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

如下图 16 展示了 UniDiffuser 能对真实的两张图像进行插值:

方法概览

研究团队将针对通用生成式模型的设计划分成了两个子问题:

  • 概率建模框架:是否能寻找到一个概率建模框架,能同时建模出模态之间所有的分布,例如图文之间的边缘分布、条件分布、联合分布等?
  • 网络架构:是否能设计出一个统一的网络架构,来支持各种不同模态的输入?

概率建模框架

针对概率建模框架,研究团队提出 UniDiffuser,一个基于扩散模型的概率建模框架。UniDiffuser 能够显示地建模多模态数据中包括边缘分布、条件分布、联合分布在内的所有分布。研究团队发现,关于不同分布的扩散模型学习都可以统一成一个视角:首先向两个模态的数据分别加入某种大小的噪声,然后再预测两个模态数据上的噪声。其中两个模态数据上的噪声大小决定了具体的分布。例如,将文本的噪声大小设置为 0,则对应了文生图的条件分布;将文本噪声大小设置为最大值,则对应了无条件图像生成的分布;将图文噪声大小设置为相同,则对应了图文的联合分布。根据该统一的视角,UniDiffuser 只需要将原始扩散模型的训练算法做少许的修改,便能同时学习上述的所有分布 — 如下图所示,UniDiffuser 同时向所有模态加噪而非单个模态,输入所有模态对应的噪声大小,以及预测所有模态上的噪声。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

以双模态为例子,最终的训练目标函数如下所示:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

其中

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

代表数据,

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

代表加入到两个模态中的标准高斯噪声,

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

代表两个模态加入噪声的大小(即时间),两者独立的从 {1,2,…,T} 中采样,

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

为噪声预测网络,同时预测两个模态上的噪声。

在训练后,通过向噪声预测网络设置两个模态合适的时间,UniDiffuser 能够实现无条件、条件以及联合生成。例如将文本的时间设置为 0,可以实现文到图生成;将文本的时间设置为最大值,可以实现无条件图像生成;将图文时间设置为相同值,可以实现图文联合生成。

下面罗列了 UniDiffuser 的训练和采样算法,可见这些算法相对原始的扩散模型均只做了微小的改动,易于实现。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

此外,由于 UniDiffuser 同时建模了条件分布和无条件分布,因此 UniDiffuser 天然地支持 classifier-free guidance。下面的图 3 展示了 UniDiffuser 的条件生成和联合生成在不同的 guidance scale 下的效果:

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

网络架构

针对网络架构,研究团队提出使用基于 transformer 的架构来参数化噪声预测网络。具体地,研究团队采用了最近提出的 U-ViT 架构。U-ViT 将所有的输入都视作 token,并在 transformer 块之间加入了 U 型连接。研究团队也采用了 Stable Diffusion 的策略,将不同模态的数据都转换到了隐空间再进行扩散模型的建模。值得注意的是,U-ViT 架构同样来自该研究团队,并且已被开源在 https://github.com/baofff/U-ViT。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

实验结果

UniDiffuser 首先和 Versatile Diffusion 进行了比较。Versatile Diffusion 是过去的一个基于多任务框架的多模态扩散模型。首先 UniDiffuser 和 Versatile Diffusion 进行了文到图上的效果比较。如下面的图 5 所示,在不同的 classifier-free guidance scale 下,UniDiffuser 在 CLIP Score 和 FID 指标上均要好于 Versatile Diffusion。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

然后 UniDiffuser 和 Versatile Diffusion 进行了图到文上的效果比较。如下面的图 6 所示,UniDiffuser 在图到文上有更好的 CLIP Score。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

UniDiffuser 也和专用的文到图模型在 MS-COCO 上进行了 zero-shot FID 的比较。如下面的表 1 所示,UniDiffuser 可以和专用的文到图模型取得可比的效果。

朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。

以上是朱军团队在清华开源了首个基于Transformer的多模态扩散大型模型,经过文本和图像改写全部完成。的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

Yolov10:详解、部署、应用一站式齐全! Yolov10:详解、部署、应用一站式齐全! Jun 07, 2024 pm 12:05 PM

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显着进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显着的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

清华接手,YOLOv10问世:性能大幅提升,登上GitHub热榜 清华接手,YOLOv10问世:性能大幅提升,登上GitHub热榜 Jun 06, 2024 pm 12:20 PM

目标检测系统的标杆YOLO系列,再次获得了重磅升级。自今年2月YOLOv9发布之后,YOLO(YouOnlyLookOnce)系列的接力棒传到了清华大学研究人员的手上。上周末,YOLOv10推出的消息引发了AI界的关注。它被认为是计算机视觉领域的突破性框架,以实时的端到端目标检测能力而闻名,通过提供结合效率和准确性的强大解决方案,延续了YOLO系列的传统。论文地址:https://arxiv.org/pdf/2405.14458项目地址:https://github.com/THU-MIG/yo

谷歌Gemini 1.5技术报告:轻松证明奥数题,Flash版比GPT-4 Turbo快5倍 谷歌Gemini 1.5技术报告:轻松证明奥数题,Flash版比GPT-4 Turbo快5倍 Jun 13, 2024 pm 01:52 PM

今年2月,谷歌上线了多模态大模型Gemini1.5,通过工程和基础设施优化、MoE架构等策略大幅提升了性能和速度。拥有更长的上下文,更强推理能力,可以更好地处理跨模态内容。本周五,GoogleDeepMind正式发布了Gemini1.5的技术报告,内容覆盖Flash版等最近升级,该文档长达153页。技术报告链接:https://storage.googleapis.com/deepmind-media/gemini/gemini_v1_5_report.pdf在本报告中,谷歌介绍了Gemini1

如何评估Java框架商业支持的性价比 如何评估Java框架商业支持的性价比 Jun 05, 2024 pm 05:25 PM

评估Java框架商业支持的性价比涉及以下步骤:确定所需的保障级别和服务水平协议(SLA)保证。研究支持团队的经验和专业知识。考虑附加服务,如升级、故障排除和性能优化。权衡商业支持成本与风险缓解和提高效率。

综述!全面概括基础模型对于推动自动驾驶的重要作用 综述!全面概括基础模型对于推动自动驾驶的重要作用 Jun 11, 2024 pm 05:29 PM

写在前面&笔者的个人理解最近来,随着深度学习技术的发展和突破,大规模的基础模型(FoundationModels)在自然语言处理和计算机视觉领域取得了显着性的成果。基础模型在自动驾驶当中的应用也有很大的发展前景,可以提高对于场景的理解和推理。通过对丰富的语言和视觉数据进行预训练,基础模型可以理解和解释自动驾驶场景中的各类元素并进行推理,为驾驶决策和规划提供语言和动作命令。基础模型可以根据对驾驶场景的理解来实现数据增强,用于提供在常规驾驶和数据收集期间不太可能遇到的长尾分布中那些罕见的可行

PHP 框架的学习曲线与其他语言框架相比如何? PHP 框架的学习曲线与其他语言框架相比如何? Jun 06, 2024 pm 12:41 PM

PHP框架的学习曲线取决于语言熟练度、框架复杂性、文档质量和社区支持。与Python框架相比,PHP框架的学习曲线更高,而与Ruby框架相比,则较低。与Java框架相比,PHP框架的学习曲线中等,但入门时间较短。

PHP 框架的轻量级选项如何影响应用程序性能? PHP 框架的轻量级选项如何影响应用程序性能? Jun 06, 2024 am 10:53 AM

轻量级PHP框架通过小体积和低资源消耗提升应用程序性能。其特点包括:体积小,启动快,内存占用低提升响应速度和吞吐量,降低资源消耗实战案例:SlimFramework创建RESTAPI,仅500KB,高响应性、高吞吐量

See all articles