首页 数据库 mysql教程 MySQL Thread Pool: Problem Definition

MySQL Thread Pool: Problem Definition

May 31, 2016 am 08:47 AM

A new thread pool plugin is now a part of the MySQL Enterprise Edition.

In this blog we will cover the problem that the thread pool is solving

and some high-level description of how it solves this problem.

In the traditional MySQL server model there is a one-to-one mapping between

thread and connection. Even the MySQL server has lots of code where thread

or some abbreviation of thread is actually representing a connection.

Obviously this mapping has served MySQL very well over the years, but there

are some cases where this model don't work so well.

One such case is where there are much more connections executing queries

simultaneously compared to the number of CPUs available in the server. The

MySQL Server also have scalability bottlenecks where performance suffers

when too many connections execute in parallel.

So effectively there are two reasons that can make performance suffer in

the original MySQL Server model.

The first is that many connections executing in parallel means that the

amount of data that the CPUs work on increases. This will decrease the

CPU cache hit rates. Lowering the CPU cache hit rate can have a significant

negative impact on server performance. Actually in some cases the amount

of memory allocated by the connections executing in parallel could at times

even supersede the memory available in the server. In this case we enter a

state called swapping which is very detrimental to performance.

The second problem is that the number of parallel queries and transactions

can have a negative impact on the throughput through the "critical sections"

of the MySQL Server (critical section is where mutexes are applied to

ensure only one CPU changes a certain data structure at a time, when such

a critical section becomes a scalability problem we call it a hot spot).

Statements that writes are more affected since they use more critical

sections.

Neither of those problems can be solved in the operating system scheduler.

However there are some operating systems that have attempted solving this

problem for generic applications on a higher level in the operating system.

Both of those problems have the impact that performance suffers more and

more as the number of statements executed in parallel increases.

In addition there are hot spots where the mutex is held for a longer time

when many concurrent statements and/or transactions are executed in

parallel. One such example is the transaction list in InnoDB where each

transaction is listed in a linked list. Thus when the number of concurrent

transactions increases the time to scan the list increases and the time

holding the lock increases and thus the hot spot becomes even hotter

as the concurrency increases.

Current solutions to these issues exist in InnoDB through use of the

configuration parameter --innodb-thread-concurrency. When this parameter

is set to a nonzero value, this indicates how many threads are

able to run through InnoDB code concurrently. This solution have its

use cases where it works well. It does however have the drawback that

the solution itself contains a hot spot that limits the MySQL server

scalability. It does also not contain any solution to limiting the

number of concurrent transactions.

In a previous alpha version of the MySQL Server (MySQL 6.0) a thread

pool was developed. This thread pool solved the problem with limiting

the number of concurrent threads executing. It did nothing to solve

the problem with limiting the number of concurrent transactions.

It was also a scalability bottleneck in itself. Finally it didn't

solve all issues regarding long queries and blocked queries.

This made it possible for the MySQL Server to become completely

blocked.

When developing the thread pool extension now available in the MySQL

Enterprise Edition we decided to start from a clean plate with the

following requirements:

1) Limit the number of concurrently executing statements to ensure

that each statement execution has sufficient CPU and memory resources

to fulfill its task.

2) Split threads and connection into thread groups that are

independently managed. This is to ensure that the thread pool

plugin itself doesn't become a scalability bottleneck. The

aim is that each thread group has one or zero active threads

at any point in time.

3) Limit the number of concurrently executing transactions

through prioritizing queued connections dependent on if

they have started a transaction or not.

4) Avoid deadlocks when a statement execution becomes long or

when the statement is blocked for some reason for an extended

time.

If you are interested in knowing more details of how the new

thread pool solves these requirements there will be a

webinar on Thursday 20 Oct 2011 at 9.00 PDT. Check here

for details on how to access it.

If you want to try out the thread pool go here.

参考:

http://mikaelronstrom.blogspot.ae/2011/10/mysql-thread-pool-problem-definition.html

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

与MySQL中使用索引相比,全表扫描何时可以更快? 与MySQL中使用索引相比,全表扫描何时可以更快? Apr 09, 2025 am 12:05 AM

全表扫描在MySQL中可能比使用索引更快,具体情况包括:1)数据量较小时;2)查询返回大量数据时;3)索引列不具备高选择性时;4)复杂查询时。通过分析查询计划、优化索引、避免过度索引和定期维护表,可以在实际应用中做出最优选择。

说明InnoDB全文搜索功能。 说明InnoDB全文搜索功能。 Apr 02, 2025 pm 06:09 PM

InnoDB的全文搜索功能非常强大,能够显着提高数据库查询效率和处理大量文本数据的能力。 1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。 2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。 3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

可以在 Windows 7 上安装 mysql 吗 可以在 Windows 7 上安装 mysql 吗 Apr 08, 2025 pm 03:21 PM

是的,可以在 Windows 7 上安装 MySQL,虽然微软已停止支持 Windows 7,但 MySQL 仍兼容它。不过,安装过程中需要注意以下几点:下载适用于 Windows 的 MySQL 安装程序。选择合适的 MySQL 版本(社区版或企业版)。安装过程中选择适当的安装目录和字符集。设置 root 用户密码,并妥善保管。连接数据库进行测试。注意 Windows 7 上的兼容性问题和安全性问题,建议升级到受支持的操作系统。

InnoDB中的聚类索引和非簇索引(次级索引)之间的差异。 InnoDB中的聚类索引和非簇索引(次级索引)之间的差异。 Apr 02, 2025 pm 06:25 PM

聚集索引和非聚集索引的区别在于:1.聚集索引将数据行存储在索引结构中,适合按主键查询和范围查询。2.非聚集索引存储索引键值和数据行的指针,适用于非主键列查询。

哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么? 哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么? Mar 21, 2025 pm 06:28 PM

文章讨论了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比较了它们对初学者和高级用户的功能和适合性。[159个字符]

您如何处理MySQL中的大型数据集? 您如何处理MySQL中的大型数据集? Mar 21, 2025 pm 12:15 PM

文章讨论了处理MySQL中大型数据集的策略,包括分区,碎片,索引和查询优化。

mysql:简单的概念,用于轻松学习 mysql:简单的概念,用于轻松学习 Apr 10, 2025 am 09:29 AM

MySQL是一个开源的关系型数据库管理系统。1)创建数据库和表:使用CREATEDATABASE和CREATETABLE命令。2)基本操作:INSERT、UPDATE、DELETE和SELECT。3)高级操作:JOIN、子查询和事务处理。4)调试技巧:检查语法、数据类型和权限。5)优化建议:使用索引、避免SELECT*和使用事务。

mysql用户和数据库的关系 mysql用户和数据库的关系 Apr 08, 2025 pm 07:15 PM

MySQL 数据库中,用户和数据库的关系通过权限和表定义。用户拥有用户名和密码,用于访问数据库。权限通过 GRANT 命令授予,而表由 CREATE TABLE 命令创建。要建立用户和数据库之间的关系,需创建数据库、创建用户,然后授予权限。

See all articles