计算机存储的基本单位是字节,由8个比特位组成。由于英文只由26个字母加若干符号组成,因此英文字符可以直接用字节来保存。但是其他语言(例如中日韩等),由于字符众多,不得不使用多个字节来进行编码。
随着计算机技术的传播,非拉丁文字符编码技术不断发展,但是仍然存在两个比较大的局限性:
不支持多语言:一种语言的编码方案不能用于另外一种语言
没有统一标准:例如中文就有GBK、GB2312、GB18030等多种编码标准
由于编码方式不统一,开发人员就需要在不同编码之间来回转换,不可避免地会出现很多错误。为了解决这类不统一问题,Unicode标准被提出了。Unicode对世界上大部分文字系统进行整理、编码,让计算机可以用统一的方式处理文本。Unicode目前已经收录了超过14万个字符,天然地支持多语言。(Unicode的uni就是“统一”的词根)
Python在3之后,str对象内部改用Unicode表示,因此在源码中成为Unicode对象。使用Unicode表示的好处是:程序核心逻辑统一使用Unicode,只需在输入、输出层进行解码、编码,可最大程度地避免各种编码问题。
图示如下:
问题:由于Unicode收录字符已经超过14万个,每个字符至少需要4个字节来保存(这里应该是因为2个字节不够,所以才用4个字节,一般不会使用3个字节)。而英文字符用ASCII码表示仅需要1个字节,使用Unicode反而会使频繁使用的英文字符的开销变为原来的4倍。
首先我们来看一下Python中不同形式的str对象的大小差异:
>>> sys.getsizeof('ab') - sys.getsizeof('a') 1 >>> sys.getsizeof('一二') - sys.getsizeof('一') 2 >>> sys.getsizeof('????????') - sys.getsizeof('????') 4
由此可见,Python内部对Unicode对象进行了优化:根据文本内容,选择底层存储单元。
Unicode对象底层存储根据文本字符的Unicode码位范围分成三类:
PyUnicode_1BYTE_KIND:所有字符码位在U+0000到U+00FF之间
PyUnicode_2BYTE_KIND:所有字符码位在U+0000到U+FFFF之间,且至少有一个字符的码位大于U+00FF
PyUnicode_1BYTE_KIND:所有字符码位在U+0000到U+10FFFF之间,且至少有一个字符的码位大于U+FFFF
对应枚举如下:
enum PyUnicode_Kind { /* String contains only wstr byte characters. This is only possible when the string was created with a legacy API and _PyUnicode_Ready() has not been called yet. */ PyUnicode_WCHAR_KIND = 0, /* Return values of the PyUnicode_KIND() macro: */ PyUnicode_1BYTE_KIND = 1, PyUnicode_2BYTE_KIND = 2, PyUnicode_4BYTE_KIND = 4 };
根据不同的分类,选择不同的存储单元:
/* Py_UCS4 and Py_UCS2 are typedefs for the respective unicode representations. */ typedef uint32_t Py_UCS4; typedef uint16_t Py_UCS2; typedef uint8_t Py_UCS1;
对应关系如下:
文本类型 | 字符存储单元 | 字符存储单元大小(字节) |
---|---|---|
PyUnicode_1BYTE_KIND | Py_UCS1 | 1 |
PyUnicode_2BYTE_KIND | Py_UCS2 | 2 |
PyUnicode_4BYTE_KIND | Py_UCS4 | 4 |
由于Unicode内部存储结构因文本类型而异,因此类型kind必须作为Unicode对象公共字段进行保存。Python内部定义了一些标志位,作为Unicode公共字段:(介于笔者水平有限,这里的字段在后续内容中不会全部介绍,大家后续可以自行了解。抱拳~)
interned:是否为interned机制维护
kind:类型,用于区分字符底层存储单元大小
compact:内存分配方式,对象与文本缓冲区是否分离
asscii:文本是否均为纯ASCII
通过PyUnicode_New函数,根据文本字符数size以及最大字符maxchar初始化Unicode对象。该函数主要是根据maxchar为Unicode对象选择最紧凑的字符存储单元以及底层结构体:(源码比较长,这里就不列出了,大家可以自行了解,下面以表格形式展现)
maxchar < 128 | 128 <= maxchar < 256 | 256 <= maxchar < 65536 | 65536 <= maxchar < MAX_UNICODE | |
---|---|---|---|---|
kind | PyUnicode_1BYTE_KIND | PyUnicode_1BYTE_KIND | PyUnicode_2BYTE_KIND | PyUnicode_4BYTE_KIND |
ascii | 1 | 0 | 0 | 0 |
字符存储单元大小(字节) | 1 | 1 | 2 | 4 |
底层结构体 | PyASCIIObject | PyCompactUnicodeObject | PyCompactUnicodeObject | PyCompactUnicodeObject |
C源码:
typedef struct { PyObject_HEAD Py_ssize_t length; /* Number of code points in the string */ Py_hash_t hash; /* Hash value; -1 if not set */ struct { unsigned int interned:2; unsigned int kind:3; unsigned int compact:1; unsigned int ascii:1; unsigned int ready:1; unsigned int :24; } state; wchar_t *wstr; /* wchar_t representation (null-terminated) */ } PyASCIIObject;
源码分析:
length:文本长度
hash:文本哈希值
state:Unicode对象标志位
wstr:缓存C字符串的一个wchar_t指针,以“\0”结束(这里和我看的另一篇文章讲得不太一样,另一个描述是:ASCII文本紧接着位于PyASCIIObject结构体后面,我个人觉得现在的这种说法比较准确,毕竟源码结构体后面没有别的字段了)
图示如下:
(注意这里state字段后面有一个4字节大小的空洞,这是结构体字段内存对齐造成的现象,主要是为了优化内存访问效率)
ASCII文本由wstr指向,以’abc’和空字符串对象’'为例:
如果文本不全是ASCII,Unicode对象底层便由PyCompactUnicodeObject结构体保存。C源码如下:
/* Non-ASCII strings allocated through PyUnicode_New use the PyCompactUnicodeObject structure. state.compact is set, and the data immediately follow the structure. */ typedef struct { PyASCIIObject _base; Py_ssize_t utf8_length; /* Number of bytes in utf8, excluding the * terminating \0. */ char *utf8; /* UTF-8 representation (null-terminated) */ Py_ssize_t wstr_length; /* Number of code points in wstr, possible * surrogates count as two code points. */ } PyCompactUnicodeObject;
PyCompactUnicodeObject在PyASCIIObject的基础上增加了3个字段:
utf8_length:文本UTF8编码长度
utf8:文本UTF8编码形式,缓存以避免重复编码运算
wstr_length:wstr的“长度”(这里所谓的长度没有找到很准确的说法,笔者也不太清楚怎么能打印出来,大家可以自行研究下)
注意到,PyASCIIObject中并没有保存UTF8编码形式,这是因为ASCII本身就是合法的UTF8,这也是ASCII文本底层由PyASCIIObject保存的原因。
结构图示:
PyUnicodeObject则是Python中str对象的具体实现。C源码如下:
/* Strings allocated through PyUnicode_FromUnicode(NULL, len) use the PyUnicodeObject structure. The actual string data is initially in the wstr block, and copied into the data block using _PyUnicode_Ready. */ typedef struct { PyCompactUnicodeObject _base; union { void *any; Py_UCS1 *latin1; Py_UCS2 *ucs2; Py_UCS4 *ucs4; } data; /* Canonical, smallest-form Unicode buffer */ } PyUnicodeObject;
在日常开发时,要结合实际情况注意字符串拼接前后的内存大小差别:
>>> import sys >>> text = 'a' * 1000 >>> sys.getsizeof(text) 1049 >>> text += '????' >>> sys.getsizeof(text) 4080
如果str对象的interned标志位为1,Python虚拟机将为其开启interned机制,
源码如下:(相关信息在网上可以看到很多说法和解释,这里笔者能力有限,暂时没有找到最确切的答案,之后补充。抱拳~但是我们通过分析源码应该是能看出一些门道的)
/* This dictionary holds all interned unicode strings. Note that references to strings in this dictionary are *not* counted in the string's ob_refcnt. When the interned string reaches a refcnt of 0 the string deallocation function will delete the reference from this dictionary. Another way to look at this is that to say that the actual reference count of a string is: s->ob_refcnt + (s->state ? 2 : 0) */ static PyObject *interned = NULL; void PyUnicode_InternInPlace(PyObject **p) { PyObject *s = *p; PyObject *t; #ifdef Py_DEBUG assert(s != NULL); assert(_PyUnicode_CHECK(s)); #else if (s == NULL || !PyUnicode_Check(s)) return; #endif /* If it's a subclass, we don't really know what putting it in the interned dict might do. */ if (!PyUnicode_CheckExact(s)) return; if (PyUnicode_CHECK_INTERNED(s)) return; if (interned == NULL) { interned = PyDict_New(); if (interned == NULL) { PyErr_Clear(); /* Don't leave an exception */ return; } } Py_ALLOW_RECURSION t = PyDict_SetDefault(interned, s, s); Py_END_ALLOW_RECURSION if (t == NULL) { PyErr_Clear(); return; } if (t != s) { Py_INCREF(t); Py_SETREF(*p, t); return; } /* The two references in interned are not counted by refcnt. The deallocator will take care of this */ Py_REFCNT(s) -= 2; _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL; }
可以看到,源码前面还是做一些基本的检查。我们可以看一下37行和50行:将s添加到interned字典中时,其实s同时是key和value(这里我不太清楚为什么会这样做),所以s对应的引用计数是+2了的(具体可以看PyDict_SetDefault()的源码),所以在50行时会将计数-2,保证引用计数的正确。
考虑下面的场景:
>>> class User: def __init__(self, name, age): self.name = name self.age = age >>> user = User('Tom', 21) >>> user.__dict__ {'name': 'Tom', 'age': 21}
由于对象的属性由dict保存,这意味着每个User对象都要保存一个str对象‘name’,这会浪费大量的内存。而str是不可变对象,因此Python内部将有潜在重复可能的字符串都做成单例模式,这就是interned机制。Python具体做法就是在内部维护一个全局dict对象,所有开启interned机制的str对象均保存在这里,后续需要使用的时候,先创建,如果判断已经维护了相同的字符串,就会将新创建的这个对象回收掉。
示例:
由不同运算生成’abc’,最后都是同一个对象:
>>> a = 'abc' >>> b = 'ab' + 'c' >>> id(a), id(b), a is b (2752416949872, 2752416949872, True)
以上是Python内建类型str源码分析的详细内容。更多信息请关注PHP中文网其他相关文章!