目录
生成式人工智能的出现
生成式人工智能是如何工作的?
训练生成式人工智能模型
生成式人工智能有感知能力吗?
测试计算机智能的极限
首页 科技周边 人工智能 重新表述: 什么是生成式人工智能,以及人工智能的演进过程?

重新表述: 什么是生成式人工智能,以及人工智能的演进过程?

May 09, 2023 pm 05:22 PM
人工智能 聊天机器人

生成式人工智能是使用算法生成、操作或合成数据的任何自动化过程的总称,通常以图像或人类可读文本的形式出现。之所以称之为生成,是因为人工智能创造了以前不存在的东西。这就是它与判别式人工智能的不同之处,后者会区分不同类型的输入。换句话说,辨别性人工智能试图回答这样的问题:“这张图片是一只兔子还是一只狮子?”而生成式人工智能则会回应“给我画一张狮子和一只兔子坐在一起的图片”这样的提示。

什么是生成式人工智能?人工智能的进化

主要介绍生成式AI及其与ChatGPT和DALL-E等流行模型的使用。我们还将考虑这项技术的局限性,包括为什么“太多的手指”已经成为人工生成艺术的死赠品。

生成式人工智能的出现

自从1966年麻省理工学院(MIT)开发出模拟与治疗师交谈的聊天机器人ELIZA以来,生成式人工智能已经存在多年。但是,随着新的生成式人工智能系统的发布,人工智能和机器学习领域多年的工作最近取得了成果。人们肯定听说过ChatGPT,这是一种基于文本的人工智能聊天机器人,可以产生非常像人类的散文。DALL-E和StableDiffusion也因其基于文本提示创建充满活力和逼真的图像的能力而引起关注。我们经常将这些系统和其他类似的系统称为模型,因为它们代表了基于一个子集(有时是一个非常大的子集)的信息来模拟或建模现实世界的某些方面的尝试。

这些系统的输出是如此的不可思议,以至于很多人对意识的本质提出了哲学问题,并担心生成式人工智能对人类工作的经济影响。但是,尽管所有这些人工智能创造都是不可否认的大新闻,但表面之下的事情可能比一些人想象的要少。我们稍后会讨论这些大问题。首先,让我们看看像ChatGPT和DALL-E这样的模型下面发生了什么。

生成式人工智能是如何工作的?

生成式人工智能使用机器学习来处理大量的视觉或文本数据,其中大部分是从互联网上抓取的,然后确定哪些东西最有可能出现在其他东西附近。生成式人工智能的大部分编程工作都是为了创建算法,这些算法可以区分人工智能创造者感兴趣的“事物”——比如ChatGPT这样的聊天机器人的单词和句子,或者DALL-E的视觉元素。但从根本上说,生成式人工智能是通过评估一个庞大的数据语料库来创造它的输出的,然后用语料库确定的概率范围内的东西来回应提示。

自动补全——当你的手机或Gmail提示你正在输入的单词或句子的剩余部分可能是什么——是一种低级形式的生成式人工智能。像ChatGPT和DALL-E这样的模型只是把这个想法带到了更先进的高度

训练生成式人工智能模型

开发模型以适应所有这些数据的过程称为训练。对于不同类型的模型,这里使用了一些基础技术。ChatGPT使用所谓的转换器(T就是这个意思)。转换器从长文本序列中获取意义,以理解不同的单词或语义组件之间的关系,然后确定它们彼此接近出现的可能性。这些变形器在一个被称为预训练(PinChatGPT)的过程中,在无人监督的情况下在大量自然语言文本的语料库上运行,然后由人类与模型交互进行微调。

另一种用于训练模型的技术被称为生成对抗网络(GAN)。在这种技术中,有两种算法相互竞争。一种是基于从大数据集获得的概率生成文本或图像;另一种是判别人工智能,它经过人类的训练,可以评估输出是真实的还是人工智能生成的。生成式AI会反复尝试“欺骗”具有辨别能力的AI,自动适应成功的结果。一旦生成式人工智能持续“赢得”这场竞争,具有辨别能力的人工智能就会被人类微调,这个过程就会重新开始。

这里要记住的最重要的事情之一是,尽管在训练过程中存在人工干预,但大多数学习和适应都是自动发生的。为了使模型产生有趣的结果,需要进行许多次迭代,因此自动化是必不可少的。这个过程需要大量的计算。

生成式人工智能有感知能力吗?

用于创建和训练生成AI模型的数学和编码相当复杂,远远超出了本文的范围。但如果你与这个过程的最终结果模型互动,这种体验肯定是不可思议的。你可以让戴尔-e生产出看起来像真正的艺术品的东西。您可以与ChatGPT进行对话,就像与另一个人进行对话一样。研究人员真的创造了一台会思考的机器吗?

ChrisPhipps是IBM公司前自然语言处理主管,曾参与沃森人工智能产品的开发。他将ChatGPT描述为“非常好的预测机器”。

它非常擅长预测人类会发现什么是连贯的。它并不总是连贯的(大多数情况下是),但这并不是因为ChatGPT“理解”。事实恰恰相反:消费产出的人真的很擅长做出我们需要的任何隐含假设,以使产出有意义。

菲普斯也是一名喜剧演员,他将其与一种名为MindMeld的常见即兴游戏进行了比较。

两个人每人想到一个词,然后同时大声说出来——你可以说“boot”,我说“tree”。我们完全独立地想出了这些词,一开始,它们彼此之间没有任何关系。接下来的两个参与者拿着这两个词,试着找出他们的共同点,同时大声说出来。游戏继续进行,直到两个参与者说出同一个单词。

也许两个人都说“伐木工人”。这看起来很神奇,但实际上是我们用人类的大脑来推理输入(“boot”和“tree”),并找到其中的联系。我们做的是理解的工作,而不是机器。在ChatGPT和DALL-E中发生的事情比人们承认的要多得多。ChatGPT可以编写故事,但我们人类要做很多工作才能使其有意义。

测试计算机智能的极限

人们可以给这些人工智能模型一些提示,这将使菲普斯的观点变得相当明显。例如,想想这个谜题:“一磅铅和一磅羽毛,哪个更重?”答案当然是它们的重量相同(一磅),尽管我们的本能或常识可能会告诉我们羽毛更轻。

ChatGPT将正确地回答这个谜题,您可能会认为它这样做是因为它是一台冷酷的逻辑计算机,没有任何“常识”来绊倒它。但这并不是幕后发生的事情。ChatGPT不是逻辑推理出答案;它只是根据一个关于一磅羽毛和一磅铅的问题的预测来产生输出。因为它的训练集包含了一堆解释谜题的文本,所以它组装了一个正确答案的版本。但是,如果你问ChatGPT两磅羽毛是否比一磅铅重,它会自信地告诉你它们的重量相同,因为根据它的训练集,这仍然是最有可能输出到关于羽毛和铅的提示的结果。

以上是重新表述: 什么是生成式人工智能,以及人工智能的演进过程?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 字节跳动剪映推出 SVIP 超级会员:连续包年 499 元,提供多种 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

使用Rag和Sem-Rag提供上下文增强AI编码助手 使用Rag和Sem-Rag提供上下文增强AI编码助手 Jun 10, 2024 am 11:08 AM

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 微调真的能让LLM学到新东西吗:引入新知识可能让模型产生更多的幻觉 Jun 11, 2024 pm 03:57 PM

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

七个很酷的GenAI & LLM技术性面试问题 七个很酷的GenAI & LLM技术性面试问题 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

你所不知道的机器学习五大学派 你所不知道的机器学习五大学派 Jun 05, 2024 pm 08:51 PM

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 为大模型提供全新科学复杂问答基准与测评体系,UNSW、阿贡、芝加哥大学等多家机构联合推出SciQAG框架 Jul 25, 2024 am 06:42 AM

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 SOTA性能,厦大多模态蛋白质-配体亲和力预测AI方法,首次结合分子表面信息 Jul 17, 2024 pm 06:37 PM

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日将展示 AI 相关新品:12 层 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)发布博文,宣布将出席8月6日至8日,在美国加利福尼亚州圣克拉拉举行的全球半导体存储器峰会FMS2024,展示诸多新一代产品。未来存储器和存储峰会(FutureMemoryandStorage)简介前身是主要面向NAND供应商的闪存峰会(FlashMemorySummit),在人工智能技术日益受到关注的背景下,今年重新命名为未来存储器和存储峰会(FutureMemoryandStorage),以邀请DRAM和存储供应商等更多参与者。新产品SK海力士去年在

See all articles