尤洋团队在AAAI 2023杰出论文奖中获得新成果,使用单块V100训练模型的速度提高了72倍
本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。
就在刚刚,UC伯克利博士、新加坡国立大学校长青年教授尤洋发布最新消息——
斩获AAAI 2023杰出论文奖(Distinguished Paper)!
研究成果一次性将模型的训练速度,提升72倍。
甚至网友在拜读完论文之后发出感慨:
从12小时到10分钟,嫩牛(你们牛)啊!
尤洋博士曾在求学期间刷新ImageNet以及BERT训练速度的世界纪录。
他所设计的算法也是广泛应用于谷歌,微软,英特尔,英伟达等科技巨头。
现如今,已经回国创业潞晨科技一年半的他,带着团队又做出了怎样的算法,斩获AI顶会如此殊荣呢?
训练时长从12小时到10分钟
在这项研究中,尤洋团队提出了一种优化策略CowClip,能够加速CTR预测模型的大批量训练。
CTR(click-through rate)预测模型是个性化推荐场景下的一种常用算法。
它通常需要学习用户的反馈(点击、收藏、购买等),而每天在线产生的数据量又是空前庞大的。
因此,加快CTR预估模型的训练速度至关重要。
一般来说,提高训练速度会使用批量训练,不过批量太大会导致模型的准确度有所降低。
通过数学分析,团队证明了在扩大批次时,对于不常见特征的学习率(learning rate for infrequent features)不应该进行缩放。
通过他们提出的CowClip,可以简单有效扩展批大小。
通过在4个CTR预估模型和2个数据集上进行测试,团队成功将原始批大小扩大了128倍,并没有造成精度损失。
特别是在DeepFM上,通过将批大小从1K扩大到128K,CowClip实现了AUC超过0.1%的改进。
并在单块V100 GPU上,将训练时长从原本的12小时,缩短至只需10分钟,训练提速72倍。
目前,项目代码已开源。团队表示该算法也适用于NLP等任务。
团队介绍
本文的一作是尤洋的博士生郑奘巍,本科毕业于南京大学计算机精英班,博士毕业于新加坡国立大学。
其研究方向包括机器学习、计算机视觉和高性能计算。
以上是尤洋团队在AAAI 2023杰出论文奖中获得新成果,使用单块V100训练模型的速度提高了72倍的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

C++中机器学习算法面临的常见挑战包括内存管理、多线程、性能优化和可维护性。解决方案包括使用智能指针、现代线程库、SIMD指令和第三方库,并遵循代码风格指南和使用自动化工具。实践案例展示了如何利用Eigen库实现线性回归算法,有效地管理内存和使用高性能矩阵操作。

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

FP8和更低的浮点数量化精度,不再是H100的“专利”了!老黄想让大家用INT8/INT4,微软DeepSpeed团队在没有英伟达官方支持的条件下,硬生生在A100上跑起FP6。测试结果表明,新方法TC-FPx在A100上的FP6量化,速度接近甚至偶尔超过INT4,而且拥有比后者更高的精度。在此基础之上,还有端到端的大模型支持,目前已经开源并集成到了DeepSpeed等深度学习推理框架中。这一成果对大模型的加速效果也是立竿见影——在这种框架下用单卡跑Llama,吞吐量比双卡还要高2.65倍。一名

写在前面项目链接:https://nianticlabs.github.io/mickey/给定两张图片,可以通过建立图片之间的对应关系来估计它们之间的相机姿态。通常,这些对应关系是二维到二维的,而我们估计的姿态在尺度上是不确定的。一些应用,例如随时随地实现即时增强现实,需要尺度度量的姿态估计,因此它们依赖于外部的深度估计器来恢复尺度。本文提出了MicKey,这是一个关键点匹配流程,能够够预测三维相机空间中的度量对应关系。通过学习跨图像的三维坐标匹配,我们能够在没有深度测试的情况下推断出度量相对
