目录
jdk1.8版本
数据结构
get()
put()
size()
扩容
首页 Java java教程 如何在Java中利用ConcurrentHashMap实现线程安全的映射?

如何在Java中利用ConcurrentHashMap实现线程安全的映射?

May 10, 2023 am 10:25 AM
java map concurrenthashmap

jdk1.7版本

数据结构

    /**
     * The segments, each of which is a specialized hash table.
     */
    final Segment<K,V>[] segments;
登录后复制

可以看到主要就是一个Segment数组,注释也写了,每个都是一个特殊的hash table。

来看一下Segment是什么东西。

static final class Segment<K,V> extends ReentrantLock implements Serializable {
    	......
            /**
         * The per-segment table. Elements are accessed via
         * entryAt/setEntryAt providing volatile semantics.
         */
        transient volatile HashEntry<K,V>[] table;
        transient int threshold;
        final float loadFactor;
    	// 构造函数
        Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;
            this.threshold = threshold;
            this.table = tab;
        }
  		......
    }
登录后复制

上面是部分代码,可以看到Segment继承了ReentrantLock,所以其实每个Segment就是一个锁。

里面存放着HashEntry数组,该变量用volatile修饰。HashEntry和hashmap的节点类似,也是一个链表的节点。

来看看具体的代码,可以看到和hashmap里面稍微不同的是,他的成员变量有用volatile修饰。

    static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
        HashEntry(int hash, K key, V value, HashEntry<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        ......
    }
登录后复制

所以ConcurrentHashMap的数据结构差不多是下图这种样子的。

Java中怎么使用ConcurrentHashMap实现线程安全的Map

在构造的时候,Segment 的数量由所谓的 concurrentcyLevel 决定,默认是 16,也可以在相应构造函数直接指定。注意,Java 需要它是 2 的幂数值,如果输入是类似 15 这种非幂值,会被自动调整到 16 之类 2 的幂数值。

来看看源码,先从简单的get方法开始

get()

    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        // 通过unsafe获取Segment数组的元素
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            // 还是通过unsafe获取HashEntry数组的元素
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }
登录后复制

get的逻辑很简单,就是找到Segment对应下标的HashEntry数组,再找到HashEntry数组对应下标的链表头,再遍历链表获取数据。

这个获取数组中的数据是使用UNSAFE.getObjectVolatile(segments, u),unsafe提供了像c语言的可以直接访问内存的能力。该方法可以获取对象的相应偏移量的数据。u就是计算好的一个偏移量,所以等同于segments[i],只是效率更高。

put()

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }
登录后复制

而对于 put 操作,是以 Unsafe 调用方式,直接获取相应的 Segment,然后进行线程安全的 put 操作:

主要逻辑在Segment内部的put方法

final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            // scanAndLockForPut会去查找是否有key相同Node
            // 无论如何,确保获取锁
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;
                HashEntry<K,V> first = entryAt(tab, index);
                for (HashEntry<K,V> e = first;;) {
                    if (e != null) {
                        K k;
                        // 更新已有value...
                    }
                    else {
                        // 放置HashEntry到特定位置,如果超过阈值,进行rehash
                        // ...
                    }
                }
            } finally {
                unlock();
            }
            return oldValue;
        }
登录后复制

size()

来看一下主要的代码,

for (;;) {
    // 如果重试次数等于默认的2,就锁住所有的segment,来计算值
    if (retries++ == RETRIES_BEFORE_LOCK) {
        for (int j = 0; j < segments.length; ++j)
            ensureSegment(j).lock(); // force creation
    }
    sum = 0L;
    size = 0;
    overflow = false;
    for (int j = 0; j < segments.length; ++j) {
        Segment<K,V> seg = segmentAt(segments, j);
        if (seg != null) {
            sum += seg.modCount;
            int c = seg.count;
            if (c < 0 || (size += c) < 0)
                overflow = true;
        }
    }
    // 如果sum不再变化,就表示得到了一个确切的值
    if (sum == last)
        break;
    last = sum;
}
登录后复制

这里其实就是计算所有segment的数量和,如果数量和跟上次获取到的值相等,就表示map没有进行操作,这个值是相对正确的。如果重试两次之后还是没法得到一个统一的值,就锁住所有的segment,再来获取值。

扩容

private void rehash(HashEntry<K,V> node) {
            HashEntry<K,V>[] oldTable = table;
            int oldCapacity = oldTable.length;
    		// 新表的大小是原来的两倍
            int newCapacity = oldCapacity << 1;
            threshold = (int)(newCapacity * loadFactor);
            HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
            int sizeMask = newCapacity - 1;
            for (int i = 0; i < oldCapacity ; i++) {
                HashEntry<K,V> e = oldTable[i];
                if (e != null) {
                    HashEntry<K,V> next = e.next;
                    int idx = e.hash & sizeMask;
                    if (next == null)   //  Single node on list
                        newTable[idx] = e;
                    else { // Reuse consecutive sequence at same slot
                        // 如果有多个节点
                        HashEntry<K,V> lastRun = e;
                        int lastIdx = idx;
                        // 这里操作就是找到末尾的一段索引值都相同的链表节点,这段的头结点是lastRun.
                        for (HashEntry<K,V> last = next;
                             last != null;
                             last = last.next) {
                            int k = last.hash & sizeMask;
                            if (k != lastIdx) {
                                lastIdx = k;
                                lastRun = last;
                            }
                        }
                        // 然后将lastRun结点赋值给数组位置,这样lastRun后面的节点也跟着过去了。
                        newTable[lastIdx] = lastRun;
                        // 之后就是复制开头到lastRun之间的节点
                        // Clone remaining nodes
                        for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                            V v = p.value;
                            int h = p.hash;
                            int k = h & sizeMask;
                            HashEntry<K,V> n = newTable[k];
                            newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                        }
                    }
                }
            }
            int nodeIndex = node.hash & sizeMask; // add the new node
            node.setNext(newTable[nodeIndex]);
            newTable[nodeIndex] = node;
            table = newTable;
        }
登录后复制

jdk1.8版本

数据结构

1.8的版本的ConcurrentHashmap整体上和Hashmap有点像,但是去除了segment,而是使用node的数组。

transient volatile Node<K,V>[] table;
登录后复制

1.8中还是有Segment这个内部类,但是存在的意义只是为了序列化兼容,实际已经不使用了。

来看一下node节点

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;
        Node(int hash, K key, V val, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.val = val;
            this.next = next;
        }
        ......
    }
登录后复制

和HashMap中的node节点类似,也是实现Map.Entry,不同的是val和next加上了volatile修饰来保证可见性。

put()

    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                // 初始化
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                // 利用CAS去进行无锁线程安全操作,如果bin是空的
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                     // 细粒度的同步修改操作... 
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                // 找到相同key就更新
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 没有相同的就新增
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 如果是树节点,进行树的操作
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                // Bin超过阈值,进行树化
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }
登录后复制

可以看到,在同步逻辑上,它使用的是 synchronized,而不是通常建议的 ReentrantLock 之类,这是为什么呢?现在 JDK1.8 中,synchronized 已经被不断优化,可以不再过分担心性能差异,另外,相比于 ReentrantLock,它可以减少内存消耗,这是个非常大的优势。

与此同时,更多细节实现通过使用 Unsafe 进行了优化,例如 tabAt 就是直接利用 getObjectAcquire,避免间接调用的开销。

那么,再来看看size是怎么操作的?

    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    sum += a.value;
            }
        }
        return sum;
    }
登录后复制

这里就是获取成员变量counterCells,遍历获取总数。

其实,对于 CounterCell 的操作,是基于 java.util.concurrent.atomic.LongAdder 进行的,是一种 JVM 利用空间换取更高效率的方法,利用了Striped64内部的复杂逻辑。这个东西非常小众,大多数情况下,建议还是使用 AtomicLong,足以满足绝大部分应用的性能需求。

扩容

 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
		......
        // 初始化
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
     	// 是否继续处理下一个
        boolean advance = true;
     	// 是否完成
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                // 首次循环才会进来这里
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                //扩容结束后做后续工作
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                //每当一条线程扩容结束就会更新一次 sizeCtl 的值,进行减 1 操作
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 如果是null,设置fwd
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // 说明该位置已经被处理过了,不需要再处理
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 真正的处理逻辑
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        // 树节点操作
                        else if (f instanceof TreeBin) {
                            ......
                        }
                    }
                }
            }
        }
    }
登录后复制
     }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    // 树节点操作
                    else if (f instanceof TreeBin) {
                        ......
                    }
                }
            }
        }
    }
}
登录后复制

核心逻辑和HashMap一样也是创建两个链表,只是多了获取lastRun的操作。

以上是如何在Java中利用ConcurrentHashMap实现线程安全的映射?的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Java 中的平方根 Java 中的平方根 Aug 30, 2024 pm 04:26 PM

Java 中的平方根指南。下面我们分别通过例子和代码实现来讨论平方根在Java中的工作原理。

Java 中的完美数 Java 中的完美数 Aug 30, 2024 pm 04:28 PM

Java 完美数指南。这里我们讨论定义,如何在 Java 中检查完美数?,示例和代码实现。

Java 中的随机数生成器 Java 中的随机数生成器 Aug 30, 2024 pm 04:27 PM

Java 随机数生成器指南。在这里,我们通过示例讨论 Java 中的函数,并通过示例讨论两个不同的生成器。

Java中的Weka Java中的Weka Aug 30, 2024 pm 04:28 PM

Java 版 Weka 指南。这里我们通过示例讨论简介、如何使用weka java、平台类型和优点。

Java 中的史密斯数 Java 中的史密斯数 Aug 30, 2024 pm 04:28 PM

Java 史密斯数指南。这里我们讨论定义,如何在Java中检查史密斯号?带有代码实现的示例。

Java Spring 面试题 Java Spring 面试题 Aug 30, 2024 pm 04:29 PM

在本文中,我们保留了最常被问到的 Java Spring 面试问题及其详细答案。这样你就可以顺利通过面试。

突破或从Java 8流返回? 突破或从Java 8流返回? Feb 07, 2025 pm 12:09 PM

Java 8引入了Stream API,提供了一种强大且表达力丰富的处理数据集合的方式。然而,使用Stream时,一个常见问题是:如何从forEach操作中中断或返回? 传统循环允许提前中断或返回,但Stream的forEach方法并不直接支持这种方式。本文将解释原因,并探讨在Stream处理系统中实现提前终止的替代方法。 延伸阅读: Java Stream API改进 理解Stream forEach forEach方法是一个终端操作,它对Stream中的每个元素执行一个操作。它的设计意图是处

Java 中的时间戳至今 Java 中的时间戳至今 Aug 30, 2024 pm 04:28 PM

Java 中的时间戳到日期指南。这里我们还结合示例讨论了介绍以及如何在java中将时间戳转换为日期。

See all articles