ChatGPT核心方法可用于AI绘画,效果飞升47%,通讯作者:已跳槽OpenAI
ChatGPT中有这样一个核心训练方法,名叫“人类反馈强化学习(RLHF)”。
它可以让模型更安全、输出结果更遵循人类意图。
现在,来自谷歌Research和UC伯克利的研究人员发现,将该方法用在AI绘画上,“治疗”图像跟输入不完全匹配的情况,效果也奇好——
可以实现高达47%的改进。
△ 左为Stable Diffusion,右为改进后效果
这一刻,AIGC领域中两类大火的模型,似乎找到了某种“共鸣”。
如何将RLHF用于AI绘画?
RLHF,全称“Reinforcement Learning from Human Feedback”,是OpenAI和DeepMind于2017年合作开发的一种强化学习技术。
正如其名,RLHF就是用人类对模型输出结果的评价(即反馈)来直接优化模型,在LLM中,它可以使得“模型价值观”更符合人类价值观。
而在AI图像生成模型中,它可以让生成图像与文本提示得到充分对齐。
具体而言,首先,收集人类反馈数据。
在这里,研究人员一共生成了27000余个“文本图像对”,然后让一些人类来打分。
为了简单起见,文本提示只包括以下四种类别,分别关乎数量、颜色、背景和混合选项;人类的反馈则只分“好”、“坏”与“不知道(skip)”。
其次,学习奖励函数。
这一步,就是利用刚刚获得的人类评价组成的数据集,训练出奖励函数,然后用该函数来预测人类对模型输出的满意度(公式红色部分)。
这样,模型就知道自己的结果究竟有几分符合文本。
除了奖励函数,作者还提出了一个辅助任务(公式蓝色部分)。
也就是当图像生成完成后,模型再给一堆文本,但其中只有一个是原始文本,让奖励模型“自己检查”图像是否跟该文本相匹配。
这种逆向操作可以让效果得到“双重保险”(可以辅助下图中的step2进行理解)。
最后,就是微调了。
即通过奖励加权最大似然估计(reward-weighted likelihood maximization)(下公式第一项),更新文本-图像生成模型。
为了避免过拟合,作者对预训练数据集上的NLL值(公式第二项)进行了最小化。这种做法类似于InstructionGPT (ChatGPT的“直系前辈”)。
效果提升47%,但清晰度下滑5%
如下一系列效果所示,相比原始的Stable Diffusion,用RLHF微调过后的模型可以:
(1)更正确地get文本里的“两只”和“绿色”;
(2)不会忽略“大海”作为背景的要求;
(3)想要红老虎,能给出“更红”的结果。
从具体数据来看,微调后的模型人类满意度为50%,相比原来的模型(3%),得到了47%的提高。
不过,代价是失去了5%的图像清晰度。
从下图我们也能很清楚的看到,右边的狼明显比左边的糊一些:
对此,作者表示,使用更大的人类评价数据集和更好的优化 (RL) 方法,可以改善这种情况。
关于作者
本文一共9位作者。
一作为谷歌AI研究科学家Kimin Lee,韩国科学技术院博士,博士后研究在UC伯克利大学展开。
华人作者三位:
Liu Hao,UC伯克利在读博士生,主要研究兴趣为反馈神经网络。
Du Yuqing,同UC伯克利博士在读,主要研究方向为无监督强化学习方法。
Shixiang Shane Gu (顾世翔),通讯作者,本科师从三巨头之一Hinton,博士毕业于剑桥大学。
△ 顾世翔
值得一提的是,写这篇文章时他还是谷歌人,如今已经跳槽至OpenAI,并在那里直接向ChatGPT负责人报告。
论文地址:
https://arxiv.org/abs/2302.12192
参考链接:[1]https://www.php.cn/link/4d42d2f5010c1c13f23492a35645d6a7
[2]https://openai.com/blog/instruction-following/
以上是ChatGPT核心方法可用于AI绘画,效果飞升47%,通讯作者:已跳槽OpenAI的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

要使用 phpMyAdmin 创建数据表,以下步骤必不可少:连接到数据库并单击“新建”标签。为表命名并选择存储引擎(推荐 InnoDB)。通过单击“添加列”按钮添加列详细信息,包括列名、数据类型、是否允许空值以及其他属性。选择一个或多个列作为主键。单击“保存”按钮创建表和列。

Redis内存碎片是指分配的内存中存在无法再分配的小块空闲区域。应对策略包括:重启Redis:彻底清空内存,但会中断服务。优化数据结构:使用更适合Redis的结构,减少内存分配和释放次数。调整配置参数:使用策略淘汰最近最少使用的键值对。使用持久化机制:定期备份数据,重启Redis清理碎片。监控内存使用情况:及时发现问题并采取措施。

创建Oracle数据库并非易事,需理解底层机制。1. 需了解数据库和Oracle DBMS的概念;2. 掌握SID、CDB(容器数据库)、PDB(可插拔数据库)等核心概念;3. 使用SQL*Plus创建CDB,再创建PDB,需指定大小、数据文件数、路径等参数;4. 高级应用需调整字符集、内存等参数,并进行性能调优;5. 需注意磁盘空间、权限和参数设置,并持续监控和优化数据库性能。 熟练掌握需不断实践,才能真正理解Oracle数据库的创建和管理。

创建Oracle数据库,常用方法是使用dbca图形化工具,步骤如下:1. 使用dbca工具,设置dbName指定数据库名;2. 设置sysPassword和systemPassword为强密码;3. 设置characterSet和nationalCharacterSet为AL32UTF8;4. 设置memorySize和tablespaceSize根据实际需求调整;5. 指定logFile路径。 高级方法为使用SQL命令手动创建,但更复杂易错。 需要注意密码强度、字符集选择、表空间大小及内存

有效监控 Redis 数据库对于保持最佳性能、识别潜在瓶颈和确保整体系统可靠性至关重要。 Redis Exporter Service 是一个强大的实用程序,旨在使用 Prometheus 监控 Redis 数据库。 本教程将指导您完成 Redis Exporter Service 的完整设置和配置,确保您无缝建立监控解决方案。通过学习本教程,您将实现完全可操作的监控设置

**Redis内存配置的核心参数是 maxmemory,它限制 Redis 可使用内存量。当超过此限制时,Redis 根据 maxmemory-policy 执行淘汰策略,有:noeviction(直接拒绝写入)、allkeys-lru/volatile-lru(按LRU淘汰)、allkeys-random/volatile-random(随机淘汰)、volatile-ttl(按过期时间淘汰)。其他相关参数包括 maxmemory-samples(LRU采样数量)、rdb-compression

Oracle SQL语句的核心是SELECT、INSERT、UPDATE和DELETE,以及各种子句的灵活运用。理解语句背后的执行机制至关重要,如索引优化。高级用法包括子查询、连接查询、分析函数和PL/SQL。常见错误包括语法错误、性能问题和数据一致性问题。性能优化最佳实践涉及使用适当的索引、避免使用SELECT *、优化WHERE子句和使用绑定变量。掌握Oracle SQL需要实践,包括代码编写、调试、思考和理解底层机制。

Redis 采用精细的内存管理机制,包括:精心设计的内存友好数据结构、针对不同大小内存块优化分配策略的多内存分配器、根据特定需求选择淘汰策略的内存淘汰机制,以及用于监控内存使用情况的工具。这种机制的目标是极致性能,通过精细控制和高效利用内存,尽量减少内存碎片和提高访问效率,确保 Redis 在各种场景中稳定高效运行。
