python自带help功能怎么使用
python help使用
C:\Users\wusong>python Python 3.8.2rc1 (tags/v3.8.2rc1:8623e68, Feb 11 2020, 10:46:21) [MSC v.1916 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>>
输入help()
>>> help Type help() for interactive help, or help(object) for help about object. >>> help() Welcome to Python 3.8's help utility! If this is your first time using Python, you should definitely check out the tutorial on the Internet at https://docs.python.org/3.8/tutorial/. Enter the name of any module, keyword, or topic to get help on writing Python programs and using Python modules. To quit this help utility and return to the interpreter, just type "quit". To get a list of available modules, keywords, symbols, or topics, type "modules", "keywords", "symbols", or "topics". Each module also comes with a one-line summary of what it does; to list the modules whose name or summary contain a given string such as "spam", type "modules spam". help>
这句话:To get a list of available modules, keywords, symbols, or topics, type "modules", "keywords", "symbols", or "topics".
意思就是:
要获取可用模块、关键字、符号或主题的列表,请键入 “模块”、“关键字”、“符号”或“主题”。
modules
我们先看下modules
在help模式下输入:modules
help> modules Please wait a moment while I gather a list of all available modules... D:\software_install\python\lib\pkgutil.py:92: UserWarning: The numpy.array_api submodule is still experimental. See NEP 47. __import__(info.name) PIL asyncpg idna selenium PyInstaller atexit imaplib serial PyQt5 atlastk imghdr setuptools __future__ attr imp shelve _abc attrs importlib shlex _ast audioop inspect shutil _asyncio backports io signal _bisect base64 ipaddress simplejson _blake2 bcrypt itertools site _bootlocale bdb jinja2 six _bz2 billiard json smtpd _cffi_backend binascii keyword smtplib _codecs binhex kiwisolver sndhdr _codecs_cn bisect kombu sniffio _codecs_hk broadcaster lib2to3 socket _codecs_iso2022 builtins libfuturize socketserver _codecs_jp bz2 libpasteurize socks _codecs_kr cProfile linecache sockshandler _codecs_tw calendar locale sortedcontainers _collections celery logging sqlalchemy _collections_abc certifi loguru sqlite3 _compat_pickle cffi lzma sqlparse _compression cgi mailbox sre_compile _contextvars cgitb mailcap sre_constants _csv charset_normalizer markupsafe sre_parse _ctypes chunk marshal ssl _ctypes_test click math starlette _datetime click_didyoumean matplotlib stat _decimal click_plugins mimetypes statistics _dummy_thread click_repl mmap string _elementtree cmath modulefinder stringprep _functools cmd msilib struct _hashlib code msvcrt subprocess _heapq codecs multiprocessing sunau _imp codeop nacl symbol _io collections netrc symtable _json colorama nntplib sys _locale colorsys nt sysconfig _lsprof compileall ntpath tabnanny _lzma concurrent nturl2path tarfile _markupbase configparser numbers telnetlib _md5 contextlib numpy tempfile _msi contextvars opcode test _multibytecodec contourpy operator textwrap _multiprocessing copy optparse tftpy _opcode copyreg ordered_set this _operator crypt ordlookup threading _osx_support cryptography os time _overlapped csv outcome timeit _pickle ctypes packaging tkinter _py_abc curses paramiko token _pydecimal cv2 parser tokenize _pyinstaller_hooks_contrib cycler past tortoise _pyio databases pathlib trace _queue dataclasses pdb traceback _random datetime pefile tracemalloc _ruamel_yaml dateutil peutils trio _sha1 dbm pickle trio_websocket _sha256 decimal pickletools tty _sha3 deepdiff pip turtle _sha512 difflib pipes turtledemo _signal dis pkg_resources types _sitebuiltins distlib pkgutil typing _socket distutils platform typing_extensions _sqlite3 django platformdirs tzdata _sre doctest plistlib unicodedata _ssl dotenv poplib unittest _stat dummy_threading posixpath urllib _statistics easy_install pprint urllib3 _string email prettytable uu _strptime encodings profile uuid _struct ensurepip prompt_toolkit uvicorn _symtable enum pstats venv _testbuffer errno psutil vine _testcapi fastapi pty virtualenv _testconsole faulthandler py_compile warnings _testimportmultiple filecmp pyclbr watchfiles _testmultiphase fileinput pycparser wave _thread filelock pydantic wcwidth _threading_local fnmatch pydoc weakref _tkinter fontTools pydoc_data webbrowser _tracemalloc formatter pyecharts websockets _warnings fractions pyexpat win32_setctime _weakref ftplib pylab win32ctypes _weakrefset functools pyparsing winreg _winapi future pyqt5_plugins winsound _xxsubinterpreters gc pyqt5_tools wsgiref _yaml genericpath pytz wsproto abc getopt qt5_applications xdrlib aifc getpass qt5_tools xlrd altgraph gettext queue xlwt amqp glob quopri xml antigravity greenlet random xmlrpc anyio gzip re xxsubtype argparse h21 reprlib yaml array hashlib requests zipapp asgiref heapq rlcompleter zipfile ast hmac runpy zipimport async_generator html sched zlib asynchat http secrets asyncio httptools select asyncore idlelib selectors Enter any module name to get more help. Or, type "modules spam" to search for modules whose name or summary contain the string "spam". help>
从这里可以看出还是有相当多的模块,比如我们常用的re
,xlrd
当然也有我们后期安装的;挑一个进去看看,有啥风景,就挑xlrd
help> xlrd Help on package xlrd: NAME xlrd DESCRIPTION # Copyright (c) 2005-2012 Stephen John Machin, Lingfo Pty Ltd # This module is part of the xlrd package, which is released under a # BSD-style licence. PACKAGE CONTENTS biffh book compdoc formatting formula info sheet timemachine xldate FUNCTIONS count_records(filename, outfile=<colorama.ansitowin32.StreamWrapper object at 0x000001D26AC13D00>) For debugging and analysis: summarise the file's BIFF records. ie: produce a sorted file of ``(record_name, count)``. :param filename: The path to the file to be summarised. :param outfile: An open file, to which the summary is written. -- More -- 行数:
这里面会详细介绍xlrd
模块的名字,描述,模块目录、功能、版本、文件位置等信息,在最后一行看到-- More --
,这是一个分页符,表示当前页面不能全部显示所有信息,需要部分分页操作,可以使用空格键切换下一页,也可以使用回车键看下一行,看你自己的需求进行操作,如果不想看了可输入q
退出阅读模式,进入help模式,再输入q
则可以继续退出help模式;
help> q You are now leaving help and returning to the Python interpreter. If you want to ask for help on a particular object directly from the interpreter, you can type "help(object)". Executing "help('string')" has the same effect as typing a particular string at the help> prompt. >>>
keywords
再看下我们后面会常说的关键字
help> keywords Here is a list of the Python keywords. Enter any keyword to get more help. False class from or None continue global pass True def if raise and del import return as elif in try assert else is while async except lambda with await finally nonlocal yield break for not
symbols
这个是罗列了我们在python语言中涉及的运算符
help> symbols Here is a list of the punctuation symbols which Python assigns special meaning to. Enter any symbol to get more help. != + <= __ " += <> ` """ , == b" % - > b' %= -= >= f" & . >> f' &= ... >>= j ' / @ r" ''' // J r' ( //= [ u" ) /= \ u' * : ] | ** < ^ |= **= << ^= ~ *= <<= _
以上是python自带help功能怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

在CentOS系统上启用PyTorchGPU加速,需要安装CUDA、cuDNN以及PyTorch的GPU版本。以下步骤将引导您完成这一过程:CUDA和cuDNN安装确定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA显卡支持的CUDA版本。例如,您的MX450显卡可能支持CUDA11.1或更高版本。下载并安装CUDAToolkit:访问NVIDIACUDAToolkit官网,根据您显卡支持的最高CUDA版本下载并安装相应的版本。安装cuDNN库:前

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

MinIO对象存储:CentOS系统下的高性能部署MinIO是一款基于Go语言开发的高性能、分布式对象存储系统,与AmazonS3兼容。它支持多种客户端语言,包括Java、Python、JavaScript和Go。本文将简要介绍MinIO在CentOS系统上的安装和兼容性。CentOS版本兼容性MinIO已在多个CentOS版本上得到验证,包括但不限于:CentOS7.9:提供完整的安装指南,涵盖集群配置、环境准备、配置文件设置、磁盘分区以及MinI

在CentOS系统上进行PyTorch分布式训练,需要按照以下步骤操作:PyTorch安装:前提是CentOS系统已安装Python和pip。根据您的CUDA版本,从PyTorch官网获取合适的安装命令。对于仅需CPU的训练,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,请确保已安装对应版本的CUDA和cuDNN,并使用相应的PyTorch版本进行安装。分布式环境配置:分布式训练通常需要多台机器或单机多GPU。所

在CentOS系统上安装PyTorch,需要仔细选择合适的版本,并考虑以下几个关键因素:一、系统环境兼容性:操作系统:建议使用CentOS7或更高版本。CUDA与cuDNN:PyTorch版本与CUDA版本密切相关。例如,PyTorch1.9.0需要CUDA11.1,而PyTorch2.0.1则需要CUDA11.3。cuDNN版本也必须与CUDA版本匹配。选择PyTorch版本前,务必确认已安装兼容的CUDA和cuDNN版本。Python版本:PyTorch官方支

在CentOS上更新PyTorch到最新版本,可以按照以下步骤进行:方法一:使用pip升级pip:首先确保你的pip是最新版本,因为旧版本的pip可能无法正确安装最新版本的PyTorch。pipinstall--upgradepip卸载旧版本的PyTorch(如果已安装):pipuninstalltorchtorchvisiontorchaudio安装最新
