目录
树的介绍
二叉搜索树
列举几种Python中几种常见的实现方式:
1.使用类和递归函数实现
2.使用列表实现
3.使用字典实现
4.使用堆栈实现
首页 后端开发 Python教程 python实现二叉搜索树的方法有哪些

python实现二叉搜索树的方法有哪些

May 11, 2023 am 08:40 AM
python

树的介绍

树不同于链表或哈希表,是一种非线性数据结构,树分为二叉树、二叉搜索树、B树、B+树、红黑树等等。

树是一种数据结构,它是由n个有限节点组成的一个具有层次关系的集合。用图片来表示的话,可以看到它很像一棵倒挂着的树。因此我们将这类数据结构统称为树,树根在上面,树叶在下面。一般的树具有以下特点:

  • 每个节点有0个或者多个子节点

  • 没有父节点的节点被称为根节点

  • 每个非根节点有且只有一个父节点

  • 每个子结点都可以分为多个不相交的子树

二叉树的定义是:每个节点最多有两个子节点。即每个节点只能有以下四种情况:

  • 左子树和右子树均为空

  • 只存在左子树

  • 只存在右子树

  • 左子树和右子树均存在

二叉搜索树

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

  • 它的左右子树也分别为二叉搜索树

列举几种Python中几种常见的实现方式:

1.使用类和递归函数实现

通过定义一个节点类,包含节点值、左右子节点等属性,然后通过递归函数实现插入、查找、删除等操作。代码示例如下:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

class BST:
    def __init__(self):
        self.root = None

    def insert(self, value):
        if self.root is None:
            self.root = Node(value)
        else:
            self._insert(value, self.root)

    def _insert(self, value, node):
        if value < node.data:
            if node.left is None:
                node.left = Node(value)
            else:
                self._insert(value, node.left)
        elif value > node.data:
            if node.right is None:
                node.right = Node(value)
            else:
                self._insert(value, node.right)

    def search(self, value):
        if self.root is None:
            return False
        else:
            return self._search(value, self.root)

    def _search(self, value, node):
        if node is None:
            return False
        elif node.data == value:
            return True
        elif value < node.data:
            return self._search(value, node.left)
        else:
            return self._search(value, node.right)

    def delete(self, value):
        if self.root is None:
            return False
        else:
            self.root = self._delete(value, self.root)

    def _delete(self, value, node):
        if node is None:
            return node
        elif value < node.data:
            node.left = self._delete(value, node.left)
        elif value > node.data:
            node.right = self._delete(value, node.right)
        else:
            if node.left is None and node.right is None:
                del node
                return None
            elif node.left is None:
                temp = node.right
                del node
                return temp
            elif node.right is None:
                temp = node.left
                del node
                return temp
            else:
                temp = self._find_min(node.right)
                node.data = temp.data
                node.right = self._delete(temp.data, node.right)
        return node

    def _find_min(self, node):
        while node.left is not None:
            node = node.left
        return node
登录后复制

2.使用列表实现

通过使用一个列表来存储二叉搜索树的元素,然后通过列表中元素的位置关系来实现插入、查找、删除等操作。代码示例如下:

class BST:
    def __init__(self):
        self.values = []

    def insert(self, value):
        if len(self.values) == 0:
            self.values.append(value)
        else:
            self._insert(value, 0)

    def _insert(self, value, index):
        if value < self.values[index]:
            left_child_index = 2 * index + 1
            if left_child_index >= len(self.values):
                self.values.extend([None] * (left_child_index - len(self.values) + 1))
            if self.values[left_child_index] is None:
                self.values[left_child_index] = value
            else:
                self._insert(value, left_child_index)
        else:
            right_child_index = 2 * index + 2
            if right_child_index >= len(self.values):
                self.values.extend([None] * (right_child_index - len(self.values) + 1))
            if self.values[right_child_index] is None:
                self.values[right_child_index] = value
            else:
                self._insert(value, right_child_index)

    def search(self, value):
        if value in self.values:
            return True
        else:
            return False

    def delete(self, value):
        if value not in self.values:
            return False
        else:
            index = self.values.index(value)
            self._delete(index)
            return True

    def _delete(self, index):
        left_child_index = 2 * index + 1
        right_child_index = 2 * index + 2
        if left_child_index < len(self.values) and self.values[left_child_index] is not None:
            self._delete(left_child_index)
        if right_child_index < len(self.values) and self.values[right_child_index] is not None:
            self
登录后复制

3.使用字典实现

其中字典的键表示节点值,字典的值是一个包含左右子节点的字典。代码示例如下:

def insert(tree, value):
    if not tree:
        return {value: {}}
    elif value < list(tree.keys())[0]:
        tree[list(tree.keys())[0]] = insert(tree[list(tree.keys())[0]], value)
    else:
        tree[list(tree.keys())[0]][value] = {}
    return tree

def search(tree, value):
    if not tree:
        return False
    elif list(tree.keys())[0] == value:
        return True
    elif value < list(tree.keys())[0]:
        return search(tree[list(tree.keys())[0]], value)
    else:
        return search(tree[list(tree.keys())[0]].get(value), value)

def delete(tree, value):
    if not search(tree, value):
        return False
    else:
        if list(tree.keys())[0] == value:
            if not tree[list(tree.keys())[0]]:
                del tree[list(tree.keys())[0]]
            elif len(tree[list(tree.keys())[0]]) == 1:
                tree[list(tree.keys())[0]] = list(tree[list(tree.keys())[0]].values())[0]
            else:
                min_key = min(list(tree[list(tree.keys())[0]+1].keys()))
                tree[min_key] = tree[list(tree.keys())[0]+1][min_key]
                tree[min_key][list(tree.keys())[0]] = tree[list(tree.keys())[0]]
                del tree[list(tree.keys())[0]]
        elif value < list(tree.keys())[0]:
            tree[list(tree.keys())[0]] = delete(tree[list(tree.keys())[0]], value)
        else:
            tree[list(tree.keys())[0]][value] = delete(tree[list(tree.keys())[0]].get(value), value)
    return tree
登录后复制

由于字典是无序的,因此该实现方式可能会导致二叉搜索树不平衡,影响插入、查找和删除操作的效率。

4.使用堆栈实现

使用堆栈(Stack)可以实现一种简单的二叉搜索树,可以通过迭代方式实现插入、查找、删除等操作。具体实现过程如下:

  • 定义一个节点类,包含节点值、左右子节点等属性。

  • 定义一个堆栈,初始时将根节点入栈。

  • 当栈不为空时,取出栈顶元素,并对其进行操作:如果要插入的值小于当前节点值,则将要插入的值作为左子节点插入,并将左子节点入栈;如果要插入的值大于当前节点值,则将要插入的值作为右子节点插入,并将右子节点入栈;如果要查找或删除的值等于当前节点值,则返回或删除该节点。

  • 操作完成后,继续从堆栈中取出下一个节点进行操作,直到堆栈为空。

需要注意的是,在这种实现方式中,由于使用了堆栈来存储遍历树的过程,因此可能会导致内存占用较高。另外,由于堆栈的特性,这种实现方式只能支持深度优先遍历(Depth-First Search,DFS),不能支持广度优先遍历(Breadth-First Search,BFS)。

以下是伪代码示例:

class Node:
    def __init__(self, data):
        self.data = data
        self.left = None
        self.right = None

def insert(root, value):
    if not root:
        return Node(value)
    stack = [root]
    while stack:
        node = stack.pop()
        if value < node.data:
            if node.left is None:
                node.left = Node(value)
                break
            else:
                stack.append(node.left)
        elif value > node.data:
            if node.right is None:
                node.right = Node(value)
                break
            else:
                stack.append(node.right)

def search(root, value):
    stack = [root]
    while stack:
        node = stack.pop()
        if node.data == value:
            return True
        elif value < node.data and node.left:
            stack.append(node.left)
        elif value > node.data and node.right:
            stack.append(node.right)
    return False

def delete(root, value):
    if root is None:
        return None
    if value < root.data:
        root.left = delete(root.left, value)
    elif value > root.data:
        root.right = delete(root.right, value)
    else:
        if root.left is None:
            temp = root.right
            del root
            return temp
        elif root.right is None:
            temp = root.left
            del root
            return temp
        else:
            temp = root.right
            while temp.left is not None:
                temp = temp.left
            root.data = temp.data
            root.right = delete(root.right, temp.data)
    return root
登录后复制

以上是python实现二叉搜索树的方法有哪些的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:代码示例和比较 PHP和Python:代码示例和比较 Apr 15, 2025 am 12:07 AM

PHP和Python各有优劣,选择取决于项目需求和个人偏好。1.PHP适合快速开发和维护大型Web应用。2.Python在数据科学和机器学习领域占据主导地位。

Python vs. JavaScript:社区,图书馆和资源 Python vs. JavaScript:社区,图书馆和资源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社区、库和资源方面的对比各有优劣。1)Python社区友好,适合初学者,但前端开发资源不如JavaScript丰富。2)Python在数据科学和机器学习库方面强大,JavaScript则在前端开发库和框架上更胜一筹。3)两者的学习资源都丰富,但Python适合从官方文档开始,JavaScript则以MDNWebDocs为佳。选择应基于项目需求和个人兴趣。

docker原理详解 docker原理详解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux内核特性,提供高效、隔离的应用运行环境。其工作原理如下:1. 镜像作为只读模板,包含运行应用所需的一切;2. 联合文件系统(UnionFS)层叠多个文件系统,只存储差异部分,节省空间并加快速度;3. 守护进程管理镜像和容器,客户端用于交互;4. Namespaces和cgroups实现容器隔离和资源限制;5. 多种网络模式支持容器互联。理解这些核心概念,才能更好地利用Docker。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

Python:自动化,脚本和任务管理 Python:自动化,脚本和任务管理 Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

See all articles