首页 科技周边 人工智能 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

May 11, 2023 am 09:28 AM
模型 gan 训练

进入预训练时代后,视觉识别模型的性能得到飞速发展,但图像生成类的模型,比如生成对抗网络GAN似乎掉队了。

通常GAN的训练都是以无监督的方式从头开始训练,费时费力不说,大型预训练通过大数据学习到的「知识」都没有利用上,岂不是很亏?

而且图像生成本身就需要能够捕捉和模拟真实世界视觉现象中的复杂统计数据,不然生成出来的图片不符合物理世界规律,直接一眼鉴定为「假」。

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

 预训练模型提供知识、GAN模型提供生成能力,二者强强联合,多是一件美事!

问题来了,哪些预训练模型、以及如何结合起来才能改善GAN模型的生成能力?

最近来自CMU和Adobe的研究人员在CVPR 2022发表了一篇文章,通过「选拔」的方式将预训练模型与GAN模型的训练相结合。

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

论文链接:https://arxiv.org/abs/2112.09130

项目链接:https://github.com/nupurkmr9/vision-aided-gan

视频链接:https://www.youtube.com/watch?v=oHdyJNdQ9E4

GAN模型的训练过程由一个判别器和一个生成器组成,其中判别器用来学习区分真实样本和生成样本的相关统计数据,而生成器的目标则是让生成的图像与真实分布尽可能相同。

理想情况下,判别器应当能够测量生成图像和真实图像之间的分布差距。

但在数据量十分有限的情况下,直接上大规模预训练模型作为判别器,非常容易导致生成器被「无情碾压」,然后就「过拟合」了。

通过在FFHQ 1k数据集上的实验来看,即使采用最新的可微分数据增强方法,判别器仍然会过拟合,训练集性能很强,但在验证集上表现得很差。

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

此外,判别器可能会关注那些人类无法辨别但对机器来说很明显的伪装。 

为了平衡判别器和生成器的能力,研究人员提出将一组不同的预训练模型的表征集合起来作为判别器。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

这种方法有两个好处:

1、在预训练的特征上训练一个浅层分类器是使深度网络适应小规模数据集的常见方法,同时可以减少过拟合。

也就是说只要把预训练模型的参数固定住,再在顶层加入轻量级的分类网络就可以提供稳定的训练过程。

比如上面实验中的Ours曲线,可以看到验证集的准确率相比StyleGAN2-ADA要提升不少。

2、最近也有一些研究证明了,深度网络可以捕获有意义的视觉概念,从低级别的视觉线索(边缘和纹理)到高级别的概念(物体和物体部分)都能捕获。

建立在这些特征上的判别器可能更符合人类的感知能力。

并且将多个预训练模型组合在一起后,可以促进生成器在不同的、互补的特征空间中匹配真实的分布。

为了选择效果最好的预训练网络,研究人员首先搜集了多个sota模型组成一个「模型银行」,包括用于分类的VGG-16,用于检测和分割的Swin-T等。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

 然后基于特征空间中真实和虚假图像的线性分割,提出一个自动的模型搜索策略,并使用标签平滑和可微分的增强技术来进一步稳定模型训练,减少过拟合。

具体来说,就是将真实训练样本和生成的图像的并集分成训练集和验证集。

对于每个预训练的模型,训练一个逻辑线性判别器来分类样本是来自真实样本还是生成的,并在验证分割上使用「负二元交叉熵损失」测量分布差距,并返回误差最小的模型。

一个较低的验证误差与更高的线性探测精度相关,表明这些特征对于区分真实样本和生成的样本是有用的,使用这些特征可以为生成器提供更有用的反馈。

研究人员我们用FFHQ和LSUN CAT数据集的1000个训练样本对GAN训练进行了经验验证。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本结果显示,用预训练模型训练的GAN具有更高的线性探测精度,一般来说,可以实现更好的FID指标。

为了纳入多个现成模型的反馈,文中还探索了两种模型选择和集成策略

1)K-fixed模型选择策略,在训练开始时选择K个最好的现成模型并训练直到收敛;

2)K-progressive模型选择策略,在固定的迭代次数后迭代选择并添加性能最佳且未使用的模型。

实验结果可以发现,与K-fixed策略相比,progressive的方式具有更低的计算复杂度,也有助于选择预训练的模型,从而捕捉到数据分布的不同。例如,通过progressive策略选择的前两个模型通常是一对自监督和监督模型。

文章中的实验主要以progressive为主。

最终的训练算法首先训练一个具有标准对抗性损失的GAN。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本给定一个基线生成器,可以使用线性探测搜索到最好的预训练模型,并在训练中引入损失目标函数。

在K-progressive策略中,在训练了与可用的真实训练样本数量成比例的固定迭代次数后,把一个新的视觉辅助判别器被添加到前一阶段具有最佳训练集FID的快照中。

在训练过程中,通过水平翻转进行数据增强,并使用可微分的增强技术和单侧标签平滑作为正则化项。

还可以观察到,只使用现成的模型作为判别器会导致散度(divergence),而原始判别器和预训练模型的组合则可以改善这一情况。

最终实验展示了在FFHQ、LSUN CAT和LSUN CHURCH数据集的训练样本从1k到10k变化时的结果。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本在所有设置中,FID都能获得显著提升,证明了该方法在有限数据场景中的有效性。

为了定性分析该方法和StyleGAN2-ADA之间的差异,根据两个方法生成的样本质量来看,文中提出的新方法能够提高最差样本的质量,特别是对于FFHQ和LSUN CAT

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本当我们逐步增加下一个判别器时,可以看到线性探测对预训练模型的特征的准确性在逐渐下降,也就是说生成器更强了。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本总的来说,在只有1万个训练样本的情况下,该方法在LSUN CAT上的FID与在160万张图像上训练的StyleGAN2性能差不多。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本而在完整的数据集上,该方法在LSUN的猫、教堂和马的类别上提高了1.5到2倍的FID。

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

作者Richard Zhang在加州大学伯克利分校获得了博士学位,在康奈尔大学获得了本科和硕士学位。主要研究兴趣包括计算机视觉、机器学习、深度学习、图形和图像处理,经常通过实习或大学与学术研究人员合作。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本作者Jun-Yan Zhu是卡内基梅隆大学计算机科学学院的机器人学院的助理教授,同时在计算机科学系和机器学习部门任职,主要研究领域包括计算机视觉、计算机图形学、机器学习和计算摄影。

在加入CMU之前,他曾是Adobe Research的研究科学家。本科毕业于清华大学,博士毕业于加州大学伯克利分校,然后在MIT CSAIL做博士后。

 CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本

以上是CMU联手Adobe:GAN模型迎来预训练时代,仅需1%的训练样本的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前 By 尊渡假赌尊渡假赌尊渡假赌

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 AI颠覆数学研究!菲尔兹奖得主、华裔数学家领衔11篇顶刊论文|陶哲轩转赞 Apr 09, 2024 am 11:52 AM

AI,的确正在改变数学。最近,一直十分关注这个议题的陶哲轩,转发了最近一期的《美国数学学会通报》(BulletinoftheAmericanMathematicalSociety)。围绕「机器会改变数学吗?」这个话题,众多数学家发表了自己的观点,全程火花四射,内容硬核,精彩纷呈。作者阵容强大,包括菲尔兹奖得主AkshayVenkatesh、华裔数学家郑乐隽、纽大计算机科学家ErnestDavis等多位业界知名学者。AI的世界已经发生了天翻地覆的变化,要知道,其中很多文章是在一年前提交的,而在这一

你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 你好,电动Atlas!波士顿动力机器人复活,180度诡异动作吓坏马斯克 Apr 18, 2024 pm 07:58 PM

波士顿动力Atlas,正式进入电动机器人时代!昨天,液压Atlas刚刚「含泪」退出历史舞台,今天波士顿动力就宣布:电动Atlas上岗。看来,在商用人形机器人领域,波士顿动力是下定决心要和特斯拉硬刚一把了。新视频放出后,短短十几小时内,就已经有一百多万观看。旧人离去,新角色登场,这是历史的必然。毫无疑问,今年是人形机器人的爆发年。网友锐评:机器人的进步,让今年看起来像人类的开幕式动作、自由度远超人类,但这真不是恐怖片?视频一开始,Atlas平静地躺在地上,看起来应该是仰面朝天。接下来,让人惊掉下巴

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 快手版Sora「可灵」开放测试:生成超120s视频,更懂物理,复杂运动也能精准建模 Jun 11, 2024 am 09:51 AM

什么?疯狂动物城被国产AI搬进现实了?与视频一同曝光的,是一款名为「可灵」全新国产视频生成大模型。Sora利用了相似的技术路线,结合多项自研技术创新,生产的视频不仅运动幅度大且合理,还能模拟物理世界特性,具备强大的概念组合能力和想象力。数据上看,可灵支持生成长达2分钟的30fps的超长视频,分辨率高达1080p,且支持多种宽高比。另外再划个重点,可灵不是实验室放出的Demo或者视频结果演示,而是短视频领域头部玩家快手推出的产品级应用。而且主打一个务实,不开空头支票、发布即上线,可灵大模型已在快影

超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 超级智能体生命力觉醒!可自我更新的AI来了,妈妈再也不用担心数据瓶颈难题 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂炼大模型,一互联网的数据不够用,根本不够用。训练模型搞得跟《饥饿游戏》似的,全球AI研究者,都在苦恼怎么才能喂饱这群数据大胃王。尤其在多模态任务中,这一问题尤为突出。一筹莫展之际,来自人大系的初创团队,用自家的新模型,率先在国内把“模型生成数据自己喂自己”变成了现实。而且还是理解侧和生成侧双管齐下,两侧都能生成高质量、多模态的新数据,对模型本身进行数据反哺。模型是啥?中关村论坛上刚刚露面的多模态大模型Awaker1.0。团队是谁?智子引擎。由人大高瓴人工智能学院博士生高一钊创立,高

美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 美国空军高调展示首个AI战斗机!部长亲自试驾全程未干预,10万行代码试飞21次 May 07, 2024 pm 05:00 PM

最近,军事圈被这个消息刷屏了:美军的战斗机,已经能由AI完成全自动空战了。是的,就在最近,美军的AI战斗机首次公开,揭开了神秘面纱。这架战斗机的全名是可变稳定性飞行模拟器测试飞机(VISTA),由美空军部长亲自搭乘,模拟了一对一的空战。5月2日,美国空军部长FrankKendall在Edwards空军基地驾驶X-62AVISTA升空注意,在一小时的飞行中,所有飞行动作都由AI自主完成!Kendall表示——在过去的几十年中,我们一直在思考自主空对空作战的无限潜力,但它始终显得遥不可及。然而如今,

FisheyeDetNet:首个基于鱼眼相机的目标检测算法 FisheyeDetNet:首个基于鱼眼相机的目标检测算法 Apr 26, 2024 am 11:37 AM

目标检测在自动驾驶系统当中是一个比较成熟的问题,其中行人检测是最早得以部署算法之一。在多数论文当中已经进行了非常全面的研究。然而,利用鱼眼相机进行环视的距离感知相对来说研究较少。由于径向畸变大,标准的边界框表示在鱼眼相机当中很难实施。为了缓解上述描述,我们探索了扩展边界框、椭圆、通用多边形设计为极坐标/角度表示,并定义一个实例分割mIOU度量来分析这些表示。所提出的具有多边形形状的模型fisheyeDetNet优于其他模型,并同时在用于自动驾驶的Valeo鱼眼相机数据集上实现了49.5%的mAP

See all articles