Spring Boot怎么自定义监控指标
1.创建项目
pom.xml引入相关依赖
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.olive</groupId> <artifactId>prometheus-meter-demo</artifactId> <version>0.0.1-SNAPSHOT</version> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.3.7.RELEASE</version> <relativePath /> </parent> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <spring-boot.version>2.3.7.RELEASE</spring-boot.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <!-- Micrometer Prometheus registry --> <dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> </project>
2.自定义指标
方式一
直接使用micrometer
核心包的类进行指标定义和注册
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.micrometer.core.instrument.Counter; import io.micrometer.core.instrument.DistributionSummary; import io.micrometer.core.instrument.MeterRegistry; @Component public class NativeMetricsMontior { /** * 支付次数 */ private Counter payCount; /** * 支付金额统计 */ private DistributionSummary payAmountSum; @Autowired private MeterRegistry registry; @PostConstruct private void init() { payCount = registry.counter("pay_request_count", "payCount", "pay-count"); payAmountSum = registry.summary("pay_amount_sum", "payAmountSum", "pay-amount-sum"); } public Counter getPayCount() { return payCount; } public DistributionSummary getPayAmountSum() { return payAmountSum; } }
方式二
通过引入micrometer-registry-prometheus
包,该包结合prometheus,对micrometer进行了封装
<dependency> <groupId>io.micrometer</groupId> <artifactId>micrometer-registry-prometheus</artifactId> </dependency>
同样定义两个metrics
package com.olive.monitor; import javax.annotation.PostConstruct; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Component; import io.prometheus.client.CollectorRegistry; import io.prometheus.client.Counter; @Component public class PrometheusMetricsMonitor { /** * 订单发起次数 */ private Counter orderCount; /** * 金额统计 */ private Counter orderAmountSum; @Autowired private CollectorRegistry registry; @PostConstruct private void init() { orderCount = Counter.build().name("order_request_count") .help("order request count.") .labelNames("orderCount") .register(); orderAmountSum = Counter.build().name("order_amount_sum") .help("order amount sum.") .labelNames("orderAmountSum") .register(); registry.register(orderCount); registry.register(orderAmountSum); } public Counter getOrderCount() { return orderCount; } public Counter getOrderAmountSum() { return orderAmountSum; } }
prometheus 4种常用Metrics
Counter
连续增加不会减少的计数器,可以用于记录只增不减的类型,例如:网站访问人数,系统运行时间等。
对于Counter类型的指标,只包含一个inc()的方法,就是用于计数器+1.
一般而言,Counter类型的metric指标在冥冥中我们使用_total结束,如http_requests_total.
Gauge
可增可减的仪表盘,曲线图
对于这类可增可减的指标,用于反应应用的当前状态。
例如在监控主机时,主机当前空闲的内存大小,可用内存大小等等。
对于Gauge指标的对象则包含两个主要的方法inc()和dec(),用于增加和减少计数。
Histogram
主要用来统计数据的分布情况,这是一种特殊的metrics数据类型,代表的是一种近似的百分比估算数值,统计所有离散的指标数据在各个取值区段内的次数。例如:我们想统计一段时间内http请求响应小于0.005秒、小于0.01秒、小于0.025秒的数据分布情况。那么使用Histogram采集每一次http请求的时间,同时设置bucket。
Summary
Summary和Histogram非常相似,都可以统计事件发生的次数或者大小,以及其分布情况,他们都提供了对时间的计数_count以及值的汇总_sum,也都提供了可以计算统计样本分布情况的功能,不同之处在于Histogram可以通过histogram_quantile函数在服务器计算分位数。而Sumamry的分位数则是直接在客户端进行定义的。因此对于分位数的计算,Summary在通过PromQL进行查询的时候有更好的性能表现,而Histogram则会消耗更多的资源,但是相对于客户端而言Histogram消耗的资源就更少。用哪个都行,根据实际场景自由调整即可。
3. 测试
定义两个controller分别使用NativeMetricsMontior
和PrometheusMetricsMonitor
package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.NativeMetricsMontior; @RestController public class PayController { @Resource private NativeMetricsMontior monitor; @RequestMapping("/pay") public String pay(@RequestParam("amount") Double amount) throws Exception { // 统计支付次数 monitor.getPayCount().increment(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 统计支付总金额 monitor.getPayAmountSum().record(amount); return "支付成功, 支付金额: " + amount; } } package com.olive.controller; import java.util.Random; import javax.annotation.Resource; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; import com.olive.monitor.PrometheusMetricsMonitor; @RestController public class OrderController { @Resource private PrometheusMetricsMonitor monitor; @RequestMapping("/order") public String order(@RequestParam("amount") Double amount) throws Exception { // 订单总数 monitor.getOrderCount() .labels("orderCount") .inc(); Random random = new Random(); //int amount = random.nextInt(100); if(amount==null) { amount = 0.0; } // 统计订单总金额 monitor.getOrderAmountSum() .labels("orderAmountSum") .inc(amount); return "下单成功, 订单金额: " + amount; } }
启动服务
访问http://127.0.0.1:9595/actuator/prometheus
;正常看到监测数据
改变amount多次方式http://127.0.0.1:8080/order?amount=100
和http://127.0.0.1:8080/pay?amount=10
后;再访问http://127.0.0.1:9595/actuator/prometheus
。查看监控数据
4.项目中的应用
项目中按照上面说的方式进行数据埋点监控不太现实;在spring项目中基本通过AOP进行埋点监测。比如写一个切面Aspect
;这样的方式就非常友好。能在入口就做了数据埋点监测,无须在controller里进行代码编写。
package com.olive.aspect; import java.time.LocalDate; import java.util.concurrent.TimeUnit; import javax.servlet.http.HttpServletRequest; import org.aspectj.lang.ProceedingJoinPoint; import org.aspectj.lang.annotation.Around; import org.aspectj.lang.annotation.Aspect; import org.aspectj.lang.annotation.Pointcut; import org.springframework.stereotype.Component; import org.springframework.util.StringUtils; import org.springframework.web.context.request.RequestContextHolder; import org.springframework.web.context.request.ServletRequestAttributes; import io.micrometer.core.instrument.Metrics; @Aspect @Component public class PrometheusMetricsAspect { // 切入所有controller包下的请求方法 @Pointcut("execution(* com.olive.controller..*.*(..))") public void controllerPointcut() { } @Around("controllerPointcut()") public Object MetricsCollector(ProceedingJoinPoint joinPoint) throws Throwable { HttpServletRequest request = ((ServletRequestAttributes) RequestContextHolder.getRequestAttributes()).getRequest(); String userId = StringUtils.hasText(request.getParameter("userId")) ? request.getParameter("userId") : "no userId"; // 获取api url String api = request.getServletPath(); // 获取请求方法 String method = request.getMethod(); long startTs = System.currentTimeMillis(); LocalDate now = LocalDate.now(); String[] tags = new String[10]; tags[0] = "api"; tags[1] = api; tags[2] = "method"; tags[3] = method; tags[4] = "day"; tags[5] = now.toString(); tags[6] = "userId"; tags[7] = userId; String amount = StringUtils.hasText(request.getParameter("amount")) ? request.getParameter("amount") : "0.0"; tags[8] = "amount"; tags[9] = amount; // 请求次数加1 //自定义的指标名称:custom_http_request_all,指标包含数据 Metrics.counter("custom_http_request_all", tags).increment(); Object object = null; try { object = joinPoint.proceed(); } catch (Exception e) { //请求失败次数加1 Metrics.counter("custom_http_request_error", tags).increment(); throw e; } finally { long endTs = System.currentTimeMillis() - startTs; //记录请求响应时间 Metrics.timer("custom_http_request_time", tags).record(endTs, TimeUnit.MILLISECONDS); } return object; } }
编写好切面后,重启服务;访问controller的接口,同样可以进行自定义监控指标埋点
以上是Spring Boot怎么自定义监控指标的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

Jasypt介绍Jasypt是一个java库,它允许开发员以最少的努力为他/她的项目添加基本的加密功能,并且不需要对加密工作原理有深入的了解用于单向和双向加密的高安全性、基于标准的加密技术。加密密码,文本,数字,二进制文件...适合集成到基于Spring的应用程序中,开放API,用于任何JCE提供程序...添加如下依赖:com.github.ulisesbocchiojasypt-spring-boot-starter2.1.1Jasypt好处保护我们的系统安全,即使代码泄露,也可以保证数据源的

使用场景1、下单成功,30分钟未支付。支付超时,自动取消订单2、订单签收,签收后7天未进行评价。订单超时未评价,系统默认好评3、下单成功,商家5分钟未接单,订单取消4、配送超时,推送短信提醒……对于延时比较长的场景、实时性不高的场景,我们可以采用任务调度的方式定时轮询处理。如:xxl-job今天我们采

一、Redis实现分布式锁原理为什么需要分布式锁在聊分布式锁之前,有必要先解释一下,为什么需要分布式锁。与分布式锁相对就的是单机锁,我们在写多线程程序时,避免同时操作一个共享变量产生数据问题,通常会使用一把锁来互斥以保证共享变量的正确性,其使用范围是在同一个进程中。如果换做是多个进程,需要同时操作一个共享资源,如何互斥呢?现在的业务应用通常是微服务架构,这也意味着一个应用会部署多个进程,多个进程如果需要修改MySQL中的同一行记录,为了避免操作乱序导致脏数据,此时就需要引入分布式锁了。想要实现分

springboot读取文件,打成jar包后访问不到最新开发出现一种情况,springboot打成jar包后读取不到文件,原因是打包之后,文件的虚拟路径是无效的,只能通过流去读取。文件在resources下publicvoidtest(){Listnames=newArrayList();InputStreamReaderread=null;try{ClassPathResourceresource=newClassPathResource("name.txt");Input

在Springboot+Mybatis-plus不使用SQL语句进行多表添加操作我所遇到的问题准备工作在测试环境下模拟思维分解一下:创建出一个带有参数的BrandDTO对象模拟对后台传递参数我所遇到的问题我们都知道,在我们使用Mybatis-plus中进行多表操作是极其困难的,如果你不使用Mybatis-plus-join这一类的工具,你只能去配置对应的Mapper.xml文件,配置又臭又长的ResultMap,然后再去写对应的sql语句,这种方法虽然看上去很麻烦,但具有很高的灵活性,可以让我们

SpringBoot和SpringMVC都是Java开发中常用的框架,但它们之间有一些明显的差异。本文将探究这两个框架的特点和用途,并对它们的差异进行比较。首先,我们来了解一下SpringBoot。SpringBoot是由Pivotal团队开发的,它旨在简化基于Spring框架的应用程序的创建和部署。它提供了一种快速、轻量级的方式来构建独立的、可执行

1、自定义RedisTemplate1.1、RedisAPI默认序列化机制基于API的Redis缓存实现是使用RedisTemplate模板进行数据缓存操作的,这里打开RedisTemplate类,查看该类的源码信息publicclassRedisTemplateextendsRedisAccessorimplementsRedisOperations,BeanClassLoaderAware{//声明了key、value的各种序列化方式,初始值为空@NullableprivateRedisSe

在项目中,很多时候需要用到一些配置信息,这些信息在测试环境和生产环境下可能会有不同的配置,后面根据实际业务情况有可能还需要再做修改。我们不能将这些配置在代码中写死,最好是写到配置文件中,比如可以把这些信息写到application.yml文件中。那么,怎么在代码里获取或者使用这个地址呢?有2个方法。方法一:我们可以通过@Value注解的${key}即可获取配置文件(application.yml)中和key对应的value值,这个方法适用于微服务比较少的情形方法二:在实际项目中,遇到业务繁琐,逻
