目录
「宇宙」无所不能
5大类10个任务,都拿捏了
首页 科技周边 人工智能 连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

May 11, 2023 pm 06:58 PM
微软 模型

大模型的卷,已经不睡觉都赶不上进度了......

这不,微软亚研院刚刚发布了一个多模态大型语言模型(MLLM)—— KOSMOS-1。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

论文地址:https://arxiv.org/pdf/2302.14045.pdf

论文题目Language Is Not All You Need,还得源于一句名言。

文中有这么一句话,「我语言的局限,就是我世界的局限。——奥地利哲学家Ludwig Wittgenstein」

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

那么问题来了......

拿着图问KOSMOS-1「是鸭还是兔」能搞明白吗?这张有100多年历史的梗图硬是把谷歌AI整不会了。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

1899年,美国心理学家Joseph Jastrow首次使用「鸭兔图」来表明感知不仅是人们所看到的,而且是一种心理活动。

现在,KOSMOS-1便能将这种感知和语言模型相结合。

-图中是什么?

-像一只鸭子。

-如果不是鸭子,那是什么?

-看起来更像兔子。

-为什么?

-它有兔子的耳朵。

这么一问,KOSMOS-1真有点像微软版的ChatGPT了。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

不仅如此,Kosmos-1还能理解图像、文本、带有文本的图像、OCR、图像说明、视觉QA。

甚至IQ测试也不在话下。

「宇宙」无所不能

Kosmos来源希腊一词cosmos,有「宇宙」之意。

据论文介绍,最新Kosmos-1模型是一个多模态大型语言模型。

其主干是一个基于Transformer的因果语言模型,除了文本之外,其他模态,如视觉、音频都可以嵌入模型。

Transformer解码器用作多模态输入的通用接口,因此它能感知一般模态,进行上下文学习,并遵循指令。

Kosmos-1在语言和多模态任务上取得了令人印象深刻的表现,无需进行微调,其中包括带有文字指示的图像识别、视觉问答和多模态对话。

如下是Kosmos-1生成一些例子式样。

图片解释、图片问答、网页问题回答,简单数字公式,以及数字识别。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

那么,Kosmos-1是在哪些数据集上进行预训练的呢?

训练所用的数据库,包括文本语料库、图像-字幕对、图像和文本交叉数据集。

文本语料库取自The Pile和Common Crawl(CC);

图像-字幕对的来源为English LAION-2B、LAION-400M、COYO-700M和Conceptual Captions;

文本交叉数据集的来源是Common Crawl snapshot。

数据库有了,接下来就是对模型进行预训练了。

MLLM组件有24层、2,048个隐藏维度、8,192个FFN和32个注意力头头,产生了大约1.3B的参数。

为了保证优化的稳定性,采用Magneto初始化;为了更快地收敛,图像表示是从一个预先训练好的具有1024个特征维度的CLIP ViT-L/14模型获取的。在训练过程中,图像被预处理成224×224分辨率,CLIP模型的参数除了最后一层均被冻结。

KOSMOS-1的参数总量约为16亿。

为了使KOSMOS-1更好地与指令保持一致,对其进行了只用语言的指令调整 [LHV+23, HSLS22],即用指令数据继续训练模型,该指令数据是仅有的语言数据,与训练语料库混合。

该调优过程是按照语言建模的方式进行的,选取的指令数据集为Unnatural Instructions [HSLS22]和FLANv2 [LHV+23]。

结果显示,指令跟随能力的提高可以跨模式转移。

总之,MLLM可以从跨模态迁移中获益,将知识从语言迁移到多模态,反之亦然;

5大类10个任务,都拿捏了

一个模型好不好使,拿出来溜溜就知道了。

研究团队从多角度进行实验来评价KOSMOS-1的性能,包括5大类十项任务:

1 语言任务(语言理解、语言生成、无OCR的文本分类)

2 多模态转移(常识推理)

3 非语言推理(IQ测试)

4 感知-语言任务(图像说明、视觉问答、网页问答)

5 视觉任务(零样本图像分类、带描述的零样本图像分类)

无OCR的文本分类

这是一种不依赖于光学字符识别(OCR)的专注于文本和图像的理解任务。

KOSMOS-1对HatefulMemes和对Rendered SST-2测试集的准确率均高于优于其他模型。

而且Flamingo明确提供OCR文本到提示中,KOSMOS-1并没有访问任何外部工具或资源,这展示了KOSMOS-1阅读和理解渲染的图像中的文本的内在能力。

IQ测试

瑞文智力测试是评估非语言的最常用测试之一。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

KOSMOS-1在没有进行微调时准确率比随机选择提高了5.3%,经过微调后则提高了9.3%,表明其具有感知非语言环境中的抽象概念模式的能力。

这是首次有模型能够完成零样本Raven测试,证明了MLLMs通过将感知与语言模型结合起来进行零样本非言语推理的潜力。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

图像说明

KOSMOS-1在COCO和Flickr30k测试中的零样本性能均表现优秀,相比其他模型,其得分更高,但采用的参数量更小。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

在少样本性能测试中,得分随着k值增大有所增加。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

零样本图像分类

给定一个输入图像,并将该图像与提示 「The photo of the」连接起来。然后,输入模型以获得图像的类别名称。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

通过在ImageNet[DDS+09]上评估该模型,在有约束和无约束的条件下,KOSMOS-1的图像归类效果都明显优于GIT[WYH+22],展现了完成视觉任务的强大能力。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

常识推理

视觉常识推理任务要求模型理解现实世界中日常物体的属性,如颜色、大小和形状,这些任务是具有挑战性的,因为它们可能需要比文本中更多的关于物体属性的信息。

结果显示,KOSMOS-1在尺寸和颜色方面的推理能力都明显好于LLM模型。这主要是因为KOSMOS-1具备多模态迁移能力,从而能够将视觉知识运用到语言任务中,而不必像LLM那样必须依靠文本知识和线索来推理。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数


对于微软Kosmos-1,网友称赞道,未来5年,我可以看到一个高级机器人浏览网络,并仅通过视觉方式基于人类的文本输入来工作。真是有趣的时代。

连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数

以上是连百年梗图都整明白了!微软多模态「宇宙」搞定IQ测试,仅16亿参数的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 全球最强开源 MoE 模型来了,中文能力比肩 GPT-4,价格仅为 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想象一下,一个人工智能模型,不仅拥有超越传统计算的能力,还能以更低的成本实现更高效的性能。这不是科幻,DeepSeek-V2[1],全球最强开源MoE模型来了。DeepSeek-V2是一个强大的专家混合(MoE)语言模型,具有训练经济、推理高效的特点。它由236B个参数组成,其中21B个参数用于激活每个标记。与DeepSeek67B相比,DeepSeek-V2性能更强,同时节省了42.5%的训练成本,减少了93.3%的KV缓存,最大生成吞吐量提高到5.76倍。DeepSeek是一家探索通用人工智

替代MLP的KAN,被开源项目扩展到卷积了 替代MLP的KAN,被开源项目扩展到卷积了 Jun 01, 2024 pm 10:03 PM

本月初,来自MIT等机构的研究者提出了一种非常有潜力的MLP替代方法——KAN。KAN在准确性和可解释性方面表现优于MLP。而且它能以非常少的参数量胜过以更大参数量运行的MLP。比如,作者表示,他们用KAN以更小的网络和更高的自动化程度重现了DeepMind的结果。具体来说,DeepMind的MLP有大约300,000个参数,而KAN只有约200个参数。KAN与MLP一样具有强大的数学基础,MLP基于通用逼近定理,而KAN基于Kolmogorov-Arnold表示定理。如下图所示,KAN在边上具

特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! 特斯拉机器人进厂打工,马斯克:手的自由度今年将达到22个! May 06, 2024 pm 04:13 PM

特斯拉机器人Optimus最新视频出炉,已经可以在厂子里打工了。正常速度下,它分拣电池(特斯拉的4680电池)是这样的:官方还放出了20倍速下的样子——在小小的“工位”上,拣啊拣啊拣:这次放出的视频亮点之一在于Optimus在厂子里完成这项工作,是完全自主的,全程没有人为的干预。并且在Optimus的视角之下,它还可以把放歪了的电池重新捡起来放置,主打一个自动纠错:对于Optimus的手,英伟达科学家JimFan给出了高度的评价:Optimus的手是全球五指机器人里最灵巧的之一。它的手不仅有触觉

微软发布 Win11 八月累积更新:提高安全、优化锁屏等 微软发布 Win11 八月累积更新:提高安全、优化锁屏等 Aug 14, 2024 am 10:39 AM

本站8月14日消息,在今天的8月补丁星期二活动日中,微软发布了适用于Windows11系统的累积更新,包括面向22H2和23H2的KB5041585更新,面向21H2的KB5041592更新。上述设备安装8月累积更新之后,本站附上版本号变化如下:21H2设备安装后版本号升至Build22000.314722H2设备安装后版本号升至Build22621.403723H2设备安装后版本号升至Build22631.4037面向Windows1121H2的KB5041585更新主要内容如下:改进:提高了

微软全屏弹窗催促:Windows 10用户抓紧时间升级到Windows 11 微软全屏弹窗催促:Windows 10用户抓紧时间升级到Windows 11 Jun 06, 2024 am 11:35 AM

6月3日消息,微软正在积极向所有Windows10用户发送全屏通知,鼓励他们升级到Windows11操作系统。这一举措涉及了那些硬件配置并不支持新系统的设备。自2015年起,Windows10已经占据了近70%的市场份额,稳坐Windows操作系统的霸主地位。然而,市场占有率远超过82%的市场份额,占有率远超过2021年面世的Windows11。尽管Windows11已经推出已近三年,但其市场渗透率仍显缓慢。微软已宣布,将于2025年10月14日后终止对Windows10的技术支持,以便更专注于

全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 全面超越DPO:陈丹琦团队提出简单偏好优化SimPO,还炼出最强8B开源模型 Jun 01, 2024 pm 04:41 PM

为了将大型语言模型(LLM)与人类的价值和意图对齐,学习人类反馈至关重要,这能确保它们是有用的、诚实的和无害的。在对齐LLM方面,一种有效的方法是根据人类反馈的强化学习(RLHF)。尽管RLHF方法的结果很出色,但其中涉及到了一些优化难题。其中涉及到训练一个奖励模型,然后优化一个策略模型来最大化该奖励。近段时间已有一些研究者探索了更简单的离线算法,其中之一便是直接偏好优化(DPO)。DPO是通过参数化RLHF中的奖励函数来直接根据偏好数据学习策略模型,这样就无需显示式的奖励模型了。该方法简单稳定

无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct 无需OpenAI数据,跻身代码大模型榜单!UIUC发布StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显着突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。 StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

LLM全搞定!OmniDrive:集3D感知、推理规划于一体(英伟达最新) LLM全搞定!OmniDrive:集3D感知、推理规划于一体(英伟达最新) May 09, 2024 pm 04:55 PM

写在前面&笔者的个人理解这篇论文致力于解决当前多模态大语言模型(MLLMs)在自动驾驶应用中存在的关键挑战,即将MLLMs从2D理解扩展到3D空间的问题。由于自动驾驶车辆(AVs)需要针对3D环境做出准确的决策,这一扩展显得尤为重要。3D空间理解对于AV来说至关重要,因为它直接影响车辆做出明智决策、预测未来状态以及与环境安全互动的能力。当前的多模态大语言模型(如LLaVA-1.5)通常仅能处理较低分辨率的图像输入(例如),这是由于视觉编码器的分辨率限制,LLM序列长度的限制。然而,自动驾驶应用需

See all articles