目录
正文
1. ROC 曲线
2. AUC 面积
首页 后端开发 Python教程 python模型性能ROC和AUC是什么

python模型性能ROC和AUC是什么

May 13, 2023 pm 02:31 PM
python roc auc

正文

ROC 分析和曲线下面积 (AUC) 是数据科学中广泛使用的工具,借鉴了信号处理,用于评估不同参数化下模型的质量,或比较两个或多个模型的性能。

传统的性能指标,如准确率和召回率,在很大程度上依赖于正样本的观察。因此,ROC 和 AUC 使用真阳性率和假阳性率来评估质量,同时考虑到正面和负面观察结果。

从分解问题到使用机器学习解决问题的过程有多个步骤。它涉及数据收集、清理和特征工程、构建模型,最后是,评估模型性能。

当您评估模型的质量时,通常会使用精度和召回率等指标,也分别称为数据挖掘领域的置信度和灵敏度。

这些指标将预测值与通常来自保留集的实际观察值进行比较,使用混淆矩阵进行可视化。

python模型性能ROC和AUC是什么

让我们首先关注精度,也称为阳性预测值。使用混淆矩阵,您可以将 Precision 构建为所有真实阳性与所有预测阳性的比率。

python模型性能ROC和AUC是什么

召回率,也称为真阳性率,表示真阳性与观察到的和预测的所有阳性的比率。

python模型性能ROC和AUC是什么

使用混淆矩阵中的不同观察集来描述 PrecisionRecall,您可以开始了解这些指标如何提供模型性能的视图。

值得注意的是 Precision 和 Recall 只关注正例和预测,而不考虑任何负例。此外,他们不会将模型的性能与中值场景进行比较,中值场景只是随机猜测。

1. ROC 曲线

ROC 作为汇总工具,用于可视化 Precision 和 Recall 之间的权衡。ROC 分析使用 ROC 曲线来确定二进制信号的值有多少被噪声污染,即随机性。它为连续预测器提供了一系列操作点的灵敏度和特异性摘要。ROC 曲线是通过绘制 x 轴上的假阳性率与 y 轴上的真阳性率来获得的。

由于真阳性率是检测信号的概率,而假阳性率是误报的概率,因此 ROC 分析也广泛用于医学研究,以确定可靠地检测疾病或其他行为的阈值。

python模型性能ROC和AUC是什么

一个完美的模型将具有等于 1 的误报率和真阳性率,因此它将是 ROC 图左上角的单个操作点。而最差的可能模型将在 ROC 图的左下角有一个单一的操作点,其中误报率等于 1,真阳性率等于 0。

随机猜测模型有 50% 的机会正确预测结果,因此假阳性率将始终等于真阳性率。这就是为什么图中有一条对角线,代表检测信号与噪声的概率为 50/50。

2. AUC 面积

要全面分析 ROC 曲线并将模型的性能与其他几个模型进行比较,您实际上需要计算曲线下面积 (AUC),在文献中也称为 c 统计量。曲线下面积 (AUC) 的值介于 0 和 1 之间,因为曲线绘制在 1x1 网格上,并且与信号理论平行,它是信号可检测性的度量。

这是一个非常有用的统计数据,因为它可以让我们了解模型对真实观察结果和错误观察结果的排名有多好。它实际上是 Wilcoxon-Mann-Whitney 秩和检验的归一化版本,它检验零假设,其中两个有序测量样本是从单个分布 中抽取的。

要绘制 ROC 曲线并计算曲线下面积 (AUC),您决定使用 SckitLearn 的 RocCurveDisplay 方法并将多层感知器与随机森林模型进行比较,以尝试解决相同的分类任务。

import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, RocCurveDisplay
def plot_roc(model, test_features, test_targets):
    """
    Plotting the ROC curve for a given Model and the ROC curve for a Random Forests Models
    """
    # comparing the given model with a Random Forests model
    random_forests_model = RandomForestClassifier(random_state=42)
    random_forests_model.fit(train_features, train_targets)
    rfc_disp = RocCurveDisplay.from_estimator(random_forests_model, test_features, test_targets)
    model_disp = RocCurveDisplay.from_estimator(model, test_features, test_targets, ax=rfc_disp.ax_)
    model_disp.figure_.suptitle("ROC curve: Multilayer Perceptron vs Random Forests")
    plt.show()
# using perceptron model as input
plot_roc(ml_percetron_model, test_features, test_targets)
登录后复制

python模型性能ROC和AUC是什么

以上是python模型性能ROC和AUC是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PHP和Python:解释了不同的范例 PHP和Python:解释了不同的范例 Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

Python vs. JavaScript:学习曲线和易用性 Python vs. JavaScript:学习曲线和易用性 Apr 16, 2025 am 12:12 AM

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

在PHP和Python之间进行选择:指南 在PHP和Python之间进行选择:指南 Apr 18, 2025 am 12:24 AM

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

vs code 可以在 Windows 8 中运行吗 vs code 可以在 Windows 8 中运行吗 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

visual studio code 可以用于 python 吗 visual studio code 可以用于 python 吗 Apr 15, 2025 pm 08:18 PM

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

PHP和Python:深入了解他们的历史 PHP和Python:深入了解他们的历史 Apr 18, 2025 am 12:25 AM

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

vscode怎么在终端运行程序 vscode怎么在终端运行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率

vscode 扩展是否是恶意的 vscode 扩展是否是恶意的 Apr 15, 2025 pm 07:57 PM

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

See all articles