SpringBoot怎么整合Kafka工具类
kafka是什么?
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。
应用场景
消息系统: Kafka 和传统的消息系统(也称作消息中间件)都具备系统解耦、冗余存储、流量削峰、缓冲、异步通信、扩展性、可恢复性等功能。与此同时,Kafka 还提供了大多数消息系统难以实现的消息顺序性保障及回溯消费的功能。
存储系统: Kafka 把消息持久化到磁盘,相比于其他基于内存存储的系统而言,有效地降低了数据丢失的风险。也正是得益于 Kafka 的消息持久化功能和多副本机制,我们可以把 Kafka 作为长期的数据存储系统来使用,只需要把对应的数据保留策略设置为“永久”或启用主题的日志压缩功能即可。
流式处理平台: Kafka 不仅为每个流行的流式处理框架提供了可靠的数据来源,还提供了一个完整的流式处理类库,比如窗口、连接、变换和聚合等各类操作。
下面看下SpringBoot整合Kafka工具类的详细代码。
pom.xml
<dependency> <groupId>org.apache.commons</groupId> <artifactId>commons-lang3</artifactId> <version>3.12.0</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>2.6.3</version> </dependency> <dependency> <groupId>fastjson</groupId> <artifactId>fastjson</artifactId> <version>1.2.83</version> </dependency>
工具类
package com.bbl.demo.utils; import org.apache.commons.lang3.exception.ExceptionUtils; import org.apache.kafka.clients.admin.*; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import org.apache.kafka.common.KafkaFuture; import org.apache.kafka.common.errors.TopicExistsException; import org.apache.kafka.common.errors.UnknownTopicOrPartitionException; import com.alibaba.fastjson.JSONObject; import java.time.Duration; import java.util.*; import java.util.concurrent.ExecutionException; public class KafkaUtils { private static AdminClient admin; /** * 私有静态方法,创建Kafka生产者 * @author o * @return KafkaProducer */ private static KafkaProducer<String, String> createProducer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //0、1 和 all:0表示只要把消息发送出去就返回成功;1表示只要Leader收到消息就返回成功;all表示所有副本都写入数据成功才算成功 props.put("acks", "all"); //重试次数 props.put("retries", Integer.MAX_VALUE); //批处理的字节数 props.put("batch.size", 16384); //批处理的延迟时间,当批次数据未满之时等待的时间 props.put("linger.ms", 1); //用来约束KafkaProducer能够使用的内存缓冲的大小的,默认值32MB props.put("buffer.memory", 33554432); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); return new KafkaProducer<String, String>(props); } /** * 私有静态方法,创建Kafka消费者 * @author o * @return KafkaConsumer */ private static KafkaConsumer<String, String> createConsumer() { Properties props = new Properties(); //声明kafka的地址 props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"node01:9092,node02:9092,node03:9092"); //每个消费者分配独立的消费者组编号 props.put("group.id", "111"); //如果value合法,则自动提交偏移量 props.put("enable.auto.commit", "true"); //设置多久一次更新被消费消息的偏移量 props.put("auto.commit.interval.ms", "1000"); //设置会话响应的时间,超过这个时间kafka可以选择放弃消费或者消费下一条消息 props.put("session.timeout.ms", "30000"); //自动重置offset props.put("auto.offset.reset","earliest"); // properties.put("value.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); // properties.put("key.serializer", // "org.apache.kafka.common.serialization.ByteArraySerializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); return new KafkaConsumer<String, String>(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o */ public static void createAdmin(String servers){ Properties props = new Properties(); props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,servers); admin = AdminClient.create(props); } /** * 私有静态方法,创建Kafka集群管理员对象 * @author o * @return AdminClient */ private static void createAdmin(){ createAdmin("node01:9092,node02:9092,node03:9092"); } /** * 传入kafka约定的topic,json格式字符串,发送给kafka集群 * @author o * @param topic * @param jsonMessage */ public static void sendMessage(String topic, String jsonMessage) { KafkaProducer<String, String> producer = createProducer(); producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); producer.close(); } /** * 传入kafka约定的topic消费数据,用于测试,数据最终会输出到控制台上 * @author o * @param topic */ public static void consume(String topic) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topic)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic数组,消费数据 * @author o * @param topics */ public static void consume(String ... topics) { KafkaConsumer<String, String> consumer = createConsumer(); consumer.subscribe(Arrays.asList(topics)); while (true) { ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(100)); for (ConsumerRecord<String, String> record : records){ System.out.printf("offset = %d, key = %s, value = %s",record.offset(), record.key(), record.value()); System.out.println(); } } } /** * 传入kafka约定的topic,json格式字符串数组,发送给kafka集群 * 用于批量发送消息,性能较高。 * @author o * @param topic * @param jsonMessages * @throws InterruptedException */ public static void sendMessage(String topic, String... jsonMessages) throws InterruptedException { KafkaProducer<String, String> producer = createProducer(); for (String jsonMessage : jsonMessages) { producer.send(new ProducerRecord<String, String>(topic, jsonMessage)); } producer.close(); } /** * 传入kafka约定的topic,Map集合,内部转为json发送给kafka集群 <br> * 用于批量发送消息,性能较高。 * @author o * @param topic * @param mapMessageToJSONForArray */ public static void sendMessage(String topic, List<Map<Object, Object>> mapMessageToJSONForArray) { KafkaProducer<String, String> producer = createProducer(); for (Map<Object, Object> mapMessageToJSON : mapMessageToJSONForArray) { String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); } producer.close(); } /** * 传入kafka约定的topic,Map,内部转为json发送给kafka集群 * @author o * @param topic * @param mapMessageToJSON */ public static void sendMessage(String topic, Map<Object, Object> mapMessageToJSON) { KafkaProducer<String, String> producer = createProducer(); String array = JSONObject.toJSON(mapMessageToJSON).toString(); producer.send(new ProducerRecord<String, String>(topic, array)); producer.close(); } /** * 创建主题 * @author o * @param name 主题的名称 * @param numPartitions 主题的分区数 * @param replicationFactor 主题的每个分区的副本因子 */ public static void createTopic(String name,int numPartitions,int replicationFactor){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); CreateTopicsResult result = admin.createTopics(Arrays.asList(new NewTopic(name, numPartitions, (short) replicationFactor).configs(configs))); //以下内容用于判断创建主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" created"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof TopicExistsException) { System.out.println("topic "+entry.getKey()+" existed"); } } } } /** * 删除主题 * @author o * @param names 主题的名称 */ public static void deleteTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DeleteTopicsResult result = admin.deleteTopics(topics); //以下内容用于判断删除主题的结果 for (Map.Entry<String, KafkaFuture<Void>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" deleted"); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题详情 * @author o * @param names 主题的名称 */ public static void describeTopic(String name,String ... names){ if(admin == null) { createAdmin(); } Map<String, String> configs = new HashMap<>(); Collection<String> topics = Arrays.asList(names); topics.add(name); DescribeTopicsResult result = admin.describeTopics(topics); //以下内容用于显示主题详情的结果 for (Map.Entry<String, KafkaFuture<TopicDescription>> entry : result.values().entrySet()) { try { entry.getValue().get(); System.out.println("topic "+entry.getKey()+" describe"); System.out.println("\t name: "+entry.getValue().get().name()); System.out.println("\t partitions: "); entry.getValue().get().partitions().stream().forEach(p-> { System.out.println("\t\t index: "+p.partition()); System.out.println("\t\t\t leader: "+p.leader()); System.out.println("\t\t\t replicas: "+p.replicas()); System.out.println("\t\t\t isr: "+p.isr()); }); System.out.println("\t internal: "+entry.getValue().get().isInternal()); } catch (InterruptedException | ExecutionException e) { if (ExceptionUtils.getRootCause(e) instanceof UnknownTopicOrPartitionException) { System.out.println("topic "+entry.getKey()+" not exist"); } } } } /** * 查看主题列表 * @author o * @return Set<String> TopicList */ public static Set<String> listTopic(){ if(admin == null) { createAdmin(); } ListTopicsResult result = admin.listTopics(); try { result.names().get().stream().map(x->x+"\t").forEach(System.out::print); return result.names().get(); } catch (InterruptedException | ExecutionException e) { e.printStackTrace(); return null; } } public static void main(String[] args) { System.out.println(listTopic()); } }
以上是SpringBoot怎么整合Kafka工具类的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

随着互联网和科技的发展,数字化投资已成为人们越来越关注的话题。很多投资者不断探索和研究投资策略,希望能够获得更高的投资回报率。股票交易中,实时的股票分析对决策非常重要,其中使用Kafka实时消息队列和PHP技术实现更是一种高效且实用的手段。一、Kafka介绍Kafka是由LinkedIn公司开发的一个高吞吐量的分布式发布、订阅消息系统。Kafka的主要特点是

SpringBoot和SpringMVC都是Java开发中常用的框架,但它们之间有一些明显的差异。本文将探究这两个框架的特点和用途,并对它们的差异进行比较。首先,我们来了解一下SpringBoot。SpringBoot是由Pivotal团队开发的,它旨在简化基于Spring框架的应用程序的创建和部署。它提供了一种快速、轻量级的方式来构建独立的、可执行

如何利用React和ApacheKafka构建实时数据处理应用引言:随着大数据与实时数据处理的兴起,构建实时数据处理应用成为了很多开发者的追求。React作为一个流行的前端框架,与ApacheKafka作为一个高性能的分布式消息传递系统的结合,可以帮助我们搭建实时数据处理应用。本文将介绍如何利用React和ApacheKafka构建实时数据处理应用,并

本文来写个详细的例子来说下dubbo+nacos+Spring Boot开发实战。本文不会讲述太多的理论的知识,会写一个最简单的例子来说明dubbo如何与nacos整合,快速搭建开发环境。

Kafka可视化工具的五种选择ApacheKafka是一个分布式流处理平台,能够处理大量实时数据。它广泛用于构建实时数据管道、消息队列和事件驱动的应用程序。Kafka的可视化工具可以帮助用户监控和管理Kafka集群,并更好地理解Kafka数据流。以下是对五种流行的Kafka可视化工具的介绍:ConfluentControlCenterConfluent

如何选择合适的Kafka可视化工具?五款工具对比分析引言:Kafka是一种高性能、高吞吐量的分布式消息队列系统,被广泛应用于大数据领域。随着Kafka的流行,越来越多的企业和开发者需要一个可视化工具来方便地监控和管理Kafka集群。本文将介绍五款常用的Kafka可视化工具,并对比它们的特点和功能,帮助读者选择适合自己需求的工具。一、KafkaManager

近年来,随着大数据的兴起和活跃的开源社区,越来越多的企业开始寻找高性能的交互式数据处理系统来满足日益增长的数据需求。在这场技术升级的浪潮中,go-zero和Kafka+Avro被越来越多的企业所关注和采用。go-zero是一款基于Golang语言开发的微服务框架,具有高性能、易用、易扩展、易维护等特点,旨在帮助企业快速构建高效的微服务应用系统。它的快速成长得

在RockyLinux上安装ApacheKafka可以按照以下步骤进行操作:更新系统:首先,确保你的RockyLinux系统是最新的,执行以下命令更新系统软件包:sudoyumupdate安装Java:ApacheKafka依赖于Java,因此需要先安装JavaDevelopmentKit(JDK)。可以通过以下命令安装OpenJDK:sudoyuminstalljava-1.8.0-openjdk-devel下载和解压:访问ApacheKafka官方网站()下载最新的二进制包。选择一个稳定版本
