在医疗保健行业广泛采用人工智能的障碍
人工智能(AI)具有显著改善医疗保健服务的潜力。由于人工智能能够从非常大的数据集中解锁见解和模式,因此为创新,高价值,增强功能奠定了基础,例如患者退化预测,针对特定条件的适当干预建议,以及并行的许多生命体征的高频分析和见解。CalmWave创始人兼首席执行官OphirRonen讨论了采用人工智能的障碍以及医疗行业如何克服这些障碍。
然而,根据布鲁金斯学会最近的一份报告打开了一个新的窗口,医疗行业在采用人工智能方面尤为谨慎。尽管谨慎对待新技术是很自然的,但在医疗保健领域尤其明显,因为为患者提供最佳护理涉及到巨大的责任。临床医生在采用人工智能时担心的因素有很多,包括害怕被边缘化,害怕人工智能引发的错误对患者健康造成负面影响(即死亡),以及害怕基于黑盒人工智能的结论理解不到位。
在探讨这些问题之前,重要的是要了解医疗保健提供者将从人工智能中获得什么,特别是在工作条件方面。
人工智能能为医疗保健做些什么?
人工智能有可能通过增强临床医生识别和治疗疾病的能力来彻底改变医疗保健。人工智能系统可以分析来自电子健康记录、成像研究和其他来源的大量数据,以发现人类难以发现的模式。这些分析可以导致更早、更准确的诊断、更好的治疗结果和更个性化的护理。
人工智能可以产生重大影响的一个领域是减少临床医生的职业倦怠。特别是护士,由于其工作的高要求,他们面临着倦怠的风险。人工智能可以根据ICU警报的频率、患者的敏锐度以及干预的频率和复杂性,提供客观的工作量衡量指标,从而帮助缓解这一问题。使医院管理者和管理人员了解临床医生的工作量和倦怠的可能性,可以促进数据驱动的机会,使工作场所更健康,临床医生希望留在那里,并遵循他们对治疗的热情。
除了减少倦怠,人工智能还可以通过整合实时数据来提供可操作的见解和预测分析,帮助临床医生做出更明智的决策。例如,人工智能算法可以分析患者数据,以识别有并发症风险的患者,并提醒临床医生采取预防措施。这可以通过避免更严重的并发症来改善患者的治疗效果并降低医疗成本。
总的来说,人工智能有可能通过增强临床医生分析大量数据和识别人类难以检测的模式的能力来改变医疗保健。通过减少倦怠,提供实时数据和预测分析,人工智能可以帮助临床医生做出更明智的决策,改善患者的治疗效果,并降低医疗成本。
人工智能广泛应用的常见障碍
人工智能似乎是让医护人员的生活变得更轻松的关键。然而,将复杂和不熟悉的技术引入这样一个重要的行业有几个风险。事实上,许多医护人员担心人工智能对提供者和患者来说弊大于利。
以下是医疗服务提供商可能抵制人工智能的几个原因:
1. 可解释性
也许在医疗保健领域采用人工智能的最大障碍是围绕人工智能机制的谜团。这些算法是如何工作的?上述数据点是如何产生的?“黑箱”人工智能已经成为过去,临床医生(和监管机构)希望在涉及到基于人工智能的解决方案时能够解释。
“可解释性”是指机器学习模型及其输出可以在人类可接受的水平上以一种“有意义”的方式进行解释的概念。为了放心地将人工智能应用到他们的操作中,医疗从业者必须证明它将遵守希波克拉底誓言,即“不伤害”。如果不彻底了解人工智能是如何做出决策的,从业者将很难把重要的责任交给机器。
2.偏见和歧视
许多医疗保健系统正在稳步加大努力,解决种族差异问题,并扩大少数民族和服务不足社区的服务可及性。不幸的是,医学有着悠久的偏见历史。在某些情况下,人工智能被用来加剧这一问题。
从业者可能会担心,在特定数据集上训练的人工智能算法会系统性地忽视公司范围内改善健康公平的举措,从而使歧视性做法永久化。当今医疗保健领域的任何基于人工智能的技术,在开发更全面、更强大的解决方案以改善每个人的医疗服务时,都必须考虑这些动态。
3.风险与舒适
技术永远不会是完美的。医疗服务提供者追求完美,因为任何不完美的地方都可能意味着生命受到影响。医疗保健的风险很高,对任何新医疗技术的期望也很高。基于人工智能的产品非常准确,但并不完美。因此,基于人工智能的新技术仍然可能导致一些错误或失败,可能导致误诊或虐待危重患者。这种期望并不是人工智能所独有的,但它确实创造了一个很高的,有时甚至是不切实际的门槛,减缓了采用速度。此外,遗留系统也面临着持续的挑战。
不同的组织有自己的病人护理系统和方法。供应商通常认为熟悉度和一致性比先进性和准确性更重要。一项技术不够好或准确,但考虑临床医生使用和理解这项技术的舒适度同样重要。
4.缺乏监管
尽管FDA已经批准了数百种人工智能医疗设备,但对于医疗保健领域的非商业人工智能算法,还没有相关规定。制定这些法规的挑战很大程度上源于人工智能的发展速度。这种表面上缺乏监督和问责制的情况,对医护人员来说是可以理解的,他们更希望知道这项新技术已经得到监管机构的批准,并遵守一定的标准,尤其是在隐私和匿名方面。
如何将人工智能引入医疗保健
尽管临床医生持保留意见,但人工智能能够而且将会改变医疗保健的面貌。然而,为了成功实施基于人工智能的工具,临床医生必须站在设计、测试和培训新医疗技术的最前沿。
设计
为了给人工智能系统以信任,医疗从业者必须直接参与其设计和实施。你不能责怪临床医生,因为他们希望人工智能开发人员能够分享他们的目标,并充分意识到他们的担忧。
医院是具有关键工作流程的复杂生态系统。将人工智能成功地集成到医疗保健系统中,需要全面查看现有的工作流程,以改进它们,而不是增加更多的工作。将卫生工作者纳入设计阶段对于确保人工智能优先考虑可用性并无缝融入日常工作流程至关重要。
透明度
人工智能系统的开发人员必须为从业者提供人工智能决策过程的充分可见性和透明度。不仅要向用户提供过程的最终结果,还要向用户提供支持决策的数据。如果没有这一基本要求,人工智能在重症监护功能中的应用前景似乎很遥远。临床医生必须觉得他们同意算法的设计以及人工智能处理的数据,以提供预期的结果。
用户测试
为此,医护人员应该有足够的机会在临床环境中测试人工智能。这些真实世界的交互最终将揭示哪些用例支持从业者和患者的护理交付,而哪些用例会产生不必要的并发症。
简单地将人工智能技术投入医院病房,而不向临床医生提供用户测试,将加剧临床医生对不熟悉、偏见和故障风险的担忧。让临床医生从一开始就习惯使用这项技术,将减轻他们的担忧,并改善整合。此外,来自医护人员的反馈最终将帮助人工智能公司不断提高其技术能力,以简化日常任务,满足从业者最紧迫的需求。
临床证据
有一件事可以保证获得医疗服务提供者的认可:证明。许多医疗保健遵循临床循证方法。临床循证医学(EBM)是一种医学实践方法,强调使用现有的最佳研究证据来指导临床决策。EBM的目标是通过确保治疗和干预是基于最新和最可靠的科学证据来提高病人护理的质量。这里的关键词是证据。
虽然这需要花费更多的时间,并且可能看起来像一个巨大的不便和采用障碍,但这通常是确保安全和可持续解决方案的必要步骤。需要明确的是,存在不同程度的证据,医疗保健行业(包括监管机构)必须适应条件、场景和例外情况,提供适当的灵活性,以加速技术的使用。把证据放在技术背后,不仅可以改善患者护理,还可以灌输临床医生推动采用所需的信心。
医疗保健提供商:人工智能的目的是增强你的能力
医疗行业对人工智能的保留无疑是合理的,值得认真对待。首先要承认人工智能带来的变化,并消除人工智能的引入将立即使行业现代化的观念。
对于医护人员来说,重要的是要知道,没有他们的投入,人工智能就不会被采用,任何人工智能计划都将有明确定义的目标、价值观和证据。临床医生可以、应该而且必须在设计、测试和实施人工智能技术方面拥有发言权。没有临床医生就没有医疗保健。随着越来越多的医护人员有机会成为医疗人工智能增强技术的组成部分,从而使他们更加了解自己的新能力:减轻压力、改善工作条件和改善患者预后,广泛采用人工智能的障碍将逐渐消失。
以上是在医疗保健行业广泛采用人工智能的障碍的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题

本站6月27日消息,剪映是由字节跳动旗下脸萌科技开发的一款视频剪辑软件,依托于抖音平台且基本面向该平台用户制作短视频内容,并兼容iOS、安卓、Windows、MacOS等操作系统。剪映官方宣布会员体系升级,推出全新SVIP,包含多种AI黑科技,例如智能翻译、智能划重点、智能包装、数字人合成等。价格方面,剪映SVIP月费79元,年费599元(本站注:折合每月49.9元),连续包月则为59元每月,连续包年为499元每年(折合每月41.6元)。此外,剪映官方还表示,为提升用户体验,向已订阅了原版VIP

通过将检索增强生成和语义记忆纳入AI编码助手,提升开发人员的生产力、效率和准确性。译自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。虽然基本AI编程助手自然有帮助,但由于依赖对软件语言和编写软件最常见模式的总体理解,因此常常无法提供最相关和正确的代码建议。这些编码助手生成的代码适合解决他们负责解决的问题,但通常不符合各个团队的编码标准、惯例和风格。这通常会导致需要修改或完善其建议,以便将代码接受到应

想了解更多AIGC的内容,请访问:51CTOAI.x社区https://www.51cto.com/aigc/译者|晶颜审校|重楼不同于互联网上随处可见的传统问题库,这些问题需要跳出常规思维。大语言模型(LLM)在数据科学、生成式人工智能(GenAI)和人工智能领域越来越重要。这些复杂的算法提升了人类的技能,并在诸多行业中推动了效率和创新性的提升,成为企业保持竞争力的关键。LLM的应用范围非常广泛,它可以用于自然语言处理、文本生成、语音识别和推荐系统等领域。通过学习大量的数据,LLM能够生成文本

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

编辑|ScienceAI问答(QA)数据集在推动自然语言处理(NLP)研究发挥着至关重要的作用。高质量QA数据集不仅可以用于微调模型,也可以有效评估大语言模型(LLM)的能力,尤其是针对科学知识的理解和推理能力。尽管当前已有许多科学QA数据集,涵盖了医学、化学、生物等领域,但这些数据集仍存在一些不足。其一,数据形式较为单一,大多数为多项选择题(multiple-choicequestions),它们易于进行评估,但限制了模型的答案选择范围,无法充分测试模型的科学问题解答能力。相比之下,开放式问答

机器学习是人工智能的重要分支,它赋予计算机从数据中学习的能力,并能够在无需明确编程的情况下改进自身能力。机器学习在各个领域都有着广泛的应用,从图像识别和自然语言处理到推荐系统和欺诈检测,它正在改变我们的生活方式。机器学习领域存在着多种不同的方法和理论,其中最具影响力的五种方法被称为“机器学习五大派”。这五大派分别为符号派、联结派、进化派、贝叶斯派和类推学派。1.符号学派符号学(Symbolism),又称为符号主义,强调利用符号进行逻辑推理和表达知识。该学派认为学习是一种逆向演绎的过程,通过已有的

编辑|KX在药物研发领域,准确有效地预测蛋白质与配体的结合亲和力对于药物筛选和优化至关重要。然而,目前的研究没有考虑到分子表面信息在蛋白质-配体相互作用中的重要作用。基于此,来自厦门大学的研究人员提出了一种新颖的多模态特征提取(MFE)框架,该框架首次结合了蛋白质表面、3D结构和序列的信息,并使用交叉注意机制进行不同模态之间的特征对齐。实验结果表明,该方法在预测蛋白质-配体结合亲和力方面取得了最先进的性能。此外,消融研究证明了该框架内蛋白质表面信息和多模态特征对齐的有效性和必要性。相关研究以「S

本站7月5日消息,格芯(GlobalFoundries)于今年7月1日发布新闻稿,宣布收购泰戈尔科技(TagoreTechnology)的功率氮化镓(GaN)技术及知识产权组合,希望在汽车、物联网和人工智能数据中心应用领域探索更高的效率和更好的性能。随着生成式人工智能(GenerativeAI)等技术在数字世界的不断发展,氮化镓(GaN)已成为可持续高效电源管理(尤其是在数据中心)的关键解决方案。本站援引官方公告内容,在本次收购过程中,泰戈尔科技公司工程师团队将加入格芯,进一步开发氮化镓技术。G
