python深度学习tensorflow参数初始化initializer的方法
所有初始化方法定义
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Operations often used for initializing tensors. All variable initializers returned by functions in this file should have the following signature: def _initializer(shape, dtype=dtypes.float32, partition_info=None): Args: shape: List of `int` representing the shape of the output `Tensor`. Some initializers may also be able to accept a `Tensor`. dtype: (Optional) Type of the output `Tensor`. partition_info: (Optional) variable_scope._PartitionInfo object holding additional information about how the variable is partitioned. May be `None` if the variable is not partitioned. Returns: A `Tensor` of type `dtype` and `shape`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import random_ops class Initializer(object): """Initializer base class: all initializers inherit from this class. """ def __call__(self, shape, dtype=None, partition_info=None): raise NotImplementedError class Zeros(Initializer): """Initializer that generates tensors initialized to 0.""" def __init__(self, dtype=dtypes.float32): self.dtype = dtype def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return constant_op.constant(False if dtype is dtypes.bool else 0, dtype=dtype, shape=shape) class Ones(Initializer): """Initializer that generates tensors initialized to 1.""" def __init__(self, dtype=dtypes.float32): self.dtype = dtype def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return constant_op.constant(1, dtype=dtype, shape=shape) class Constant(Initializer): """Initializer that generates tensors with constant values. The resulting tensor is populated with values of type `dtype`, as specified by arguments `value` following the desired `shape` of the new tensor (see examples below). The argument `value` can be a constant value, or a list of values of type `dtype`. If `value` is a list, then the length of the list must be less than or equal to the number of elements implied by the desired shape of the tensor. In the case where the total number of elements in `value` is less than the number of elements required by the tensor shape, the last element in `value` will be used to fill the remaining entries. If the total number of elements in `value` is greater than the number of elements required by the tensor shape, the initializer will raise a `ValueError`. Args: value: A Python scalar, list of values, or a N-dimensional numpy array. All elements of the initialized variable will be set to the corresponding value in the `value` argument. dtype: The data type. verify_shape: Boolean that enables verification of the shape of `value`. If `True`, the initializer will throw an error if the shape of `value` is not compatible with the shape of the initialized tensor. Examples: The following example can be rewritten using a numpy.ndarray instead of the `value` list, even reshaped, as shown in the two commented lines below the `value` list initialization. ```python >>> import numpy as np >>> import tensorflow as tf >>> value = [0, 1, 2, 3, 4, 5, 6, 7] >>> # value = np.array(value) >>> # value = value.reshape([2, 4]) >>> init = tf.constant_initializer(value) >>> print('fitting shape:') >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[2, 4], initializer=init) >>> x.initializer.run() >>> print(x.eval()) fitting shape: [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.]] >>> print('larger shape:') >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[3, 4], initializer=init) >>> x.initializer.run() >>> print(x.eval()) larger shape: [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 7. 7. 7. 7.]] >>> print('smaller shape:') >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[2, 3], initializer=init) ValueError: Too many elements provided. Needed at most 6, but received 8 >>> print('shape verification:') >>> init_verify = tf.constant_initializer(value, verify_shape=True) >>> with tf.Session(): >>> x = tf.get_variable('x', shape=[3, 4], initializer=init_verify) TypeError: Expected Tensor's shape: (3, 4), got (8,). ``` """ def __init__(self, value=0, dtype=dtypes.float32, verify_shape=False): self.value = value self.dtype = dtype self.verify_shape = verify_shape def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return constant_op.constant(self.value, dtype=dtype, shape=shape, verify_shape=self.verify_shape) class RandomUniform(Initializer): """Initializer that generates tensors with a uniform distribution. Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate. maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. """ def __init__(self, minval=0, maxval=None, seed=None, dtype=dtypes.float32): self.minval = minval self.maxval = maxval self.seed = seed self.dtype = dtype def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.random_uniform(shape, self.minval, self.maxval, dtype, seed=self.seed) class RandomNormal(Initializer): """Initializer that generates tensors with a normal distribution. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. """ def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): self.mean = mean self.stddev = stddev self.seed = seed self.dtype = _assert_float_dtype(dtype) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.random_normal(shape, self.mean, self.stddev, dtype, seed=self.seed) class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. These values are similar to values from a `random_normal_initializer` except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. """ def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): self.mean = mean self.stddev = stddev self.seed = seed self.dtype = _assert_float_dtype(dtype) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal(shape, self.mean, self.stddev, dtype, seed=self.seed) class UniformUnitScaling(Initializer): """Initializer that generates tensors without scaling variance. When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. If the input is `x` and the operation `x * W`, and we want to initialize `W` uniformly at random, we need to pick `W` from [-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)] to keep the scale intact, where `dim = W.shape[0]` (the size of the input). A similar calculation for convolutional networks gives an analogous result with `dim` equal to the product of the first 3 dimensions. When nonlinearities are present, we need to multiply this by a constant `factor`. See [Sussillo et al., 2014](https://arxiv.org/abs/1412.6558) ([pdf](http://arxiv.org/pdf/1412.6558.pdf)) for deeper motivation, experiments and the calculation of constants. In section 2.3 there, the constants were numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15. Args: factor: Float. A multiplicative factor by which the values will be scaled. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. """ def __init__(self, factor=1.0, seed=None, dtype=dtypes.float32): self.factor = factor self.seed = seed self.dtype = _assert_float_dtype(dtype) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape input_size = 1.0 # Estimating input size is not possible to do perfectly, but we try. # The estimate, obtained by multiplying all dimensions but the last one, # is the right thing for matrix multiply and convolutions (see above). for dim in scale_shape[:-1]: input_size *= float(dim) # Avoid errors when initializing zero-size tensors. input_size = max(input_size, 1.0) max_val = math.sqrt(3 / input_size) * self.factor return random_ops.random_uniform(shape, -max_val, max_val, dtype, seed=self.seed) class VarianceScaling(Initializer): """Initializer capable of adapting its scale to the shape of weights tensors. With `distribution="normal"`, samples are drawn from a truncated normal distribution centered on zero, with `stddev = sqrt(scale / n)` where n is: - number of input units in the weight tensor, if mode = "fan_in" - number of output units, if mode = "fan_out" - average of the numbers of input and output units, if mode = "fan_avg" With `distribution="uniform"`, samples are drawn from a uniform distribution within [-limit, limit], with `limit = sqrt(3 * scale / n)`. Arguments: scale: Scaling factor (positive float). mode: One of "fan_in", "fan_out", "fan_avg". distribution: Random distribution to use. One of "normal", "uniform". seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. Raises: ValueError: In case of an invalid value for the "scale", mode" or "distribution" arguments. """ def __init__(self, scale=1.0, mode="fan_in", distribution="normal", seed=None, dtype=dtypes.float32): if scale <= 0.: raise ValueError("`scale` must be positive float.") if mode not in {"fan_in", "fan_out", "fan_avg"}: raise ValueError("Invalid `mode` argument:", mode) distribution = distribution.lower() if distribution not in {"normal", "uniform"}: raise ValueError("Invalid `distribution` argument:", distribution) self.scale = scale self.mode = mode self.distribution = distribution self.seed = seed self.dtype = _assert_float_dtype(dtype) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype scale = self.scale scale_shape = shape if partition_info is not None: scale_shape = partition_info.full_shape fan_in, fan_out = _compute_fans(scale_shape) if self.mode == "fan_in": scale /= max(1., fan_in) elif self.mode == "fan_out": scale /= max(1., fan_out) else: scale /= max(1., (fan_in + fan_out) / 2.) if self.distribution == "normal": stddev = math.sqrt(scale) return random_ops.truncated_normal(shape, 0.0, stddev, dtype, seed=self.seed) else: limit = math.sqrt(3.0 * scale) return random_ops.random_uniform(shape, -limit, limit, dtype, seed=self.seed) class Orthogonal(Initializer): """Initializer that generates an orthogonal matrix. If the shape of the tensor to initialize is two-dimensional, i is initialized with an orthogonal matrix obtained from the singular value decomposition of a matrix of uniform random numbers. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Args: gain: multiplicative factor to apply to the orthogonal matrix dtype: The type of the output. seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. """ def __init__(self, gain=1.0, dtype=dtypes.float32, seed=None): self.gain = gain self.dtype = _assert_float_dtype(dtype) self.seed = seed def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype # Check the shape if len(shape) < 2: raise ValueError("The tensor to initialize must be " "at least two-dimensional") # Flatten the input shape with the last dimension remaining # its original shape so it works for conv2d num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) # Generate a random matrix a = random_ops.random_uniform(flat_shape, dtype=dtype, seed=self.seed) # Compute the svd _, u, v = linalg_ops.svd(a, full_matrices=False) # Pick the appropriate singular value decomposition if num_rows > num_cols: q = u else: # Tensorflow departs from numpy conventions # such that we need to transpose axes here q = array_ops.transpose(v) return self.gain * array_ops.reshape(q, shape) # Aliases. # pylint: disable=invalid-name zeros_initializer = Zeros ones_initializer = Ones constant_initializer = Constant random_uniform_initializer = RandomUniform random_normal_initializer = RandomNormal truncated_normal_initializer = TruncatedNormal uniform_unit_scaling_initializer = UniformUnitScaling variance_scaling_initializer = VarianceScaling orthogonal_initializer = Orthogonal # pylint: enable=invalid-name def glorot_uniform_initializer(seed=None, dtype=dtypes.float32): """The Glorot uniform initializer, also called Xavier uniform initializer. It draws samples from a uniform distribution within [-limit, limit] where `limit` is `sqrt(6 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf Arguments: seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer. """ return variance_scaling_initializer(scale=1.0, mode="fan_avg", distribution="uniform", seed=seed, dtype=dtype) def glorot_normal_initializer(seed=None, dtype=dtypes.float32): """The Glorot normal initializer, also called Xavier normal initializer. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Reference: http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf Arguments: seed: A Python integer. Used to create random seeds. See @{tf.set_random_seed} for behavior. dtype: The data type. Only floating point types are supported. Returns: An initializer. """ return variance_scaling_initializer(scale=1.0, mode="fan_avg", distribution="normal", seed=seed, dtype=dtype) # Utility functions. def _compute_fans(shape): """Computes the number of input and output units for a weight shape. Arguments: shape: Integer shape tuple or TF tensor shape. Returns: A tuple of scalars (fan_in, fan_out). """ if len(shape) < 1: # Just to avoid errors for constants. fan_in = fan_out = 1 elif len(shape) == 1: fan_in = fan_out = shape[0] elif len(shape) == 2: fan_in = shape[0] fan_out = shape[1] else: # Assuming convolution kernels (2D, 3D, or more). # kernel shape: (..., input_depth, depth) receptive_field_size = 1. for dim in shape[:-2]: receptive_field_size *= dim fan_in = shape[-2] * receptive_field_size fan_out = shape[-1] * receptive_field_size return fan_in, fan_out def _assert_float_dtype(dtype): """Validate and return floating point type based on `dtype`. `dtype` must be a floating point type. Args: dtype: The data type to validate. Returns: Validated type. Raises: ValueError: if `dtype` is not a floating point type. """ if not dtype.is_floating: raise ValueError("Expected floating point type, got %s." % dtype) return dtype
1、tf.constant_initializer()
也可以简写为tf.Constant()
初始化为常数,这个非常有用,通常偏置项就是用它初始化的。
由它衍生出的两个初始化方法:
a、 tf.zeros_initializer(), 也可以简写为tf.Zeros()
b、tf.ones_initializer(), 也可以简写为tf.Ones()
例:在卷积层中,将偏置项b初始化为0,则有多种写法:
conv1 = tf.layers.conv2d(batch_images, filters=64, kernel_size=7, strides=2, activation=tf.nn.relu, kernel_initializer=tf.TruncatedNormal(stddev=0.01) bias_initializer=tf.Constant(0), )
或者:
bias_initializer=tf.constant_initializer(0)
或者:
bias_initializer=tf.zeros_initializer()
或者:
bias_initializer=tf.Zeros()
例:如何将W初始化成拉普拉斯算子?
value = [1, 1, 1, 1, -8, 1, 1, 1,1] init = tf.constant_initializer(value) W= tf.get_variable('W', shape=[3, 3], initializer=init)
2、tf.truncated_normal_initializer()
或者简写为tf.TruncatedNormal()
生成截断正态分布的随机数,这个初始化方法好像在tf中用得比较多。
它有四个参数(mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32),分别用于指定均值、标准差、随机数种子和随机数的数据类型,一般只需要设置stddev这一个参数就可以了。
例:
conv1 = tf.layers.conv2d(batch_images, filters=64, kernel_size=7, strides=2, activation=tf.nn.relu, kernel_initializer=tf.TruncatedNormal(stddev=0.01) bias_initializer=tf.Constant(0), )
或者:
conv1 = tf.layers.conv2d(batch_images, filters=64, kernel_size=7, strides=2, activation=tf.nn.relu, kernel_initializer=tf.truncated_normal_initializer(stddev=0.01) bias_initializer=tf.zero_initializer(), )
3、tf.random_normal_initializer()
可简写为 tf.RandomNormal()
生成标准正态分布的随机数,参数和truncated_normal_initializer一样。
4、random_uniform_initializer = RandomUniform()
可简写为tf.RandomUniform()
生成均匀分布的随机数,参数有四个(minval=0, maxval=None, seed=None, dtype=dtypes.float32),分别用于指定最小值,最大值,随机数种子和类型。
5、tf.uniform_unit_scaling_initializer()
可简写为tf.UniformUnitScaling()
和均匀分布差不多,只是这个初始化方法不需要指定最小最大值,是通过计算出来的。参数为(factor=1.0, seed=None, dtype=dtypes.float32)
max_val = math.sqrt(3 / input_size) * factor
这里的input_size是指输入数据的维数,假设输入为x, 运算为x * W,则input_size= W.shape[0]
它的分布区间为[ -max_val, max_val]
6、tf.variance_scaling_initializer()
可简写为tf.VarianceScaling()
参数为(scale=1.0,mode="fan_in",distribution="normal",seed=None,dtype=dtypes.float32)
scale
: 缩放尺度(正浮点数)
mode
: "fan_in", "fan_out", "fan_avg"中的一个,用于计算标准差stddev的值。
distribution
:分布类型,"normal"或“uniform"中的一个。
当 distribution="normal" 的时候,生成truncated normal distribution(截断正态分布) 的随机数,其中stddev = sqrt(scale / n) ,n的计算与mode参数有关。
如果mode = "fan_in", n为输入单元的结点数;
如果mode = "fan_out",n为输出单元的结点数;
如果mode = "fan_avg",n为输入和输出单元结点数的平均值。
当distribution="uniform”的时候 ,生成均匀分布的随机数,假设分布区间为[-limit, limit],则
limit = sqrt(3 * scale / n)
7、tf.orthogonal_initializer()
简写为tf.Orthogonal()
生成正交矩阵的随机数。
当需要生成的参数是2维时,这个正交矩阵是由均匀分布的随机数矩阵经过SVD分解而来。
8、tf.glorot_uniform_initializer()
也称之为Xavier uniform initializer,由一个均匀分布(uniform distribution)来初始化数据。
假设均匀分布的区间是[-limit, limit],则
limit=sqrt(6 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。
9、glorot_normal_initializer()
也称之为 Xavier normal initializer. 由一个 truncated normal distribution来初始化数据.
stddev = sqrt(2 / (fan_in + fan_out))
其中的fan_in和fan_out分别表示输入单元的结点数和输出单元的结点数。
以上是python深度学习tensorflow参数初始化initializer的方法的详细内容。更多信息请关注PHP中文网其他相关文章!

热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

热门话题











PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

PHP适合网页开发和快速原型开发,Python适用于数据科学和机器学习。1.PHP用于动态网页开发,语法简单,适合快速开发。2.Python语法简洁,适用于多领域,库生态系统强大。

VS Code 可用于编写 Python,并提供许多功能,使其成为开发 Python 应用程序的理想工具。它允许用户:安装 Python 扩展,以获得代码补全、语法高亮和调试等功能。使用调试器逐步跟踪代码,查找和修复错误。集成 Git,进行版本控制。使用代码格式化工具,保持代码一致性。使用 Linting 工具,提前发现潜在问题。

VS Code可以在Windows 8上运行,但体验可能不佳。首先确保系统已更新到最新补丁,然后下载与系统架构匹配的VS Code安装包,按照提示安装。安装后,注意某些扩展程序可能与Windows 8不兼容,需要寻找替代扩展或在虚拟机中使用更新的Windows系统。安装必要的扩展,检查是否正常工作。尽管VS Code在Windows 8上可行,但建议升级到更新的Windows系统以获得更好的开发体验和安全保障。

VS Code 扩展存在恶意风险,例如隐藏恶意代码、利用漏洞、伪装成合法扩展。识别恶意扩展的方法包括:检查发布者、阅读评论、检查代码、谨慎安装。安全措施还包括:安全意识、良好习惯、定期更新和杀毒软件。

Python更适合初学者,学习曲线平缓,语法简洁;JavaScript适合前端开发,学习曲线较陡,语法灵活。1.Python语法直观,适用于数据科学和后端开发。2.JavaScript灵活,广泛用于前端和服务器端编程。

PHP起源于1994年,由RasmusLerdorf开发,最初用于跟踪网站访问者,逐渐演变为服务器端脚本语言,广泛应用于网页开发。Python由GuidovanRossum于1980年代末开发,1991年首次发布,强调代码可读性和简洁性,适用于科学计算、数据分析等领域。

在 VS Code 中,可以通过以下步骤在终端运行程序:准备代码和打开集成终端确保代码目录与终端工作目录一致根据编程语言选择运行命令(如 Python 的 python your_file_name.py)检查是否成功运行并解决错误利用调试器提升调试效率
